Mgraphics

Drawing with Mgraphics in Max

The Max Mgraphics package is a vector drawing system of the sort used in Adobe
[llustrator and other modern drawing applications. The basic patch is similar to the
jitIcd patch. A jit. mgraphics object is used with the matrix dimensions as arguments
(no need to specify type-- it's going to be a 4 char). Drawing occurs when commands
are received, and the current state of the canvas is output when a bang comes in.
The difference between mgraphics and lcd graphics is primarily in the underlying
code. The lcd is a bitmapped world, with images specified pixel by pixel. When you
send lcd a lineto command the program works out which pixels in the output
memory need to be colored and colors them. Every other command does the same
sort of thing, even when it means coloring some pixels twice. Drawing simple blocks
of color is easy enough, but anything with complex curves requires some serious
math on the part of the patch-- You will have seen this in other tutorials where we
essentially calculate one pixel at a time. Sending one message per pixel really slows
things down.

gmetro 333 rtomg

click to clear

ji?mgraphics 320 240 1
'H patcher reset

Figure 1.

Basic concepts

Vector drawings are constructed from "paths”, in which we specify how far and in
which direction a virtual pen should move. Once the path is specified, we can assign
a color, then complete it with either a stroke or fill command. Of course the result
will be the same in the end, because the output of jit. mgraphics is a matrix of pixels

Peter Elsea 1/7/13 1

Mgraphics

just like jit.Icd. The advantages to the path approach are the efficiency of the
drawing code (maybe 10x as fast as jit.Icd), and more drawing commands, such as
smooth curves and the ability to draw at any angle.

Stroked Filled Fill-stroke Stroke-fill
Figure 2.

There are several metaphors to keep track of when working with mgraphics. The
first is the notion of source, mask, and destination. The source may be a preexisting
image, a solid color or a gradient. The destination is the canvas the results are
painted on, in this case a jitter matrix. The mask controls which parts of the source
are transferred to the destination. The combination of source, mask and destination
are called the context.

The path is (metaphorically) applied to the mask. The path is built by a series of
commands such as move_to, line_to, curve_to, ellipse and so on. Once the path is
built, the source is transferred to the destination by either a stroke or fill command.
Figure 2 shows the results of a path stroked, filled, filled then stroked, and finally
stroked, then filled. You can see that stroke and fill define different areas, with the
fill fitting neatly within the stroke. Actually, if you look carefully, the fill covers half
of the stroke (you probably need a retina display to see it properly). Stroked lines
are centered on the coordinates specified, and fills extyend to the coordinates!.

The path building commands take image coordinates as arguments. There are two
styles (chosen by an attribute): absolute pixel addresses with 0,0 in the upper left
corner and relative, with 0,0 centered and the height ranging from -1.0 to 1.0. The
left and right will vary according to the aspect ratio. I'll be using the absolute
coordinates in most of these examples. Much of the power of mgraphics comes from
the ability to play with the coordinates. For convenience, we can think of the
coordinates used as arguments as in the user coordinate system. There is also a fixed
destination coordinate system. All path arguments are processed by a transformation
matrix to convert user to destination coordinates. This means we can use a set of
commands with the same arguments to draw anywhere on the canvas!

Figure 3 shows these transformations in use. The basic path is a simple loop labeled
0. It is defined with some negative numbers, so only half of it shows. Itis a closed
loop that begins at and returns to 0,0. The path command used was curve_to 80 -80
80 80 0 0, stroke. This was followed by the command translate 160 120, move-to 0 0.

LInjitlcd, pixels are drawn with their upper left corners at the coordinates.

Peter Elsea 1/7/13 2

Mgraphics

Translate moves the drawing origin by the number of pixels specified. When the
same curve_to command was repeated, it produced the loop labeled 1.

The next command was rotate 1.047. This turns the entire user coordinate system
1/6th of a circle. Point 0 0 remains where it is, but all other points are rotated. Now
the path drawing command will produce loop 2. Repeating the rotate and path
commands four more times will complete the image.

(s
2y

The complete script for the central image (minus the numbers) is then:

Translate 160 120
Move to 00

curve to80-80808000
rotate 1.047

curve to80-80808000
rotate 1.047

curve to80-80808000
rotate 1.047

curve to80-80808000
rotate 1.047

curve to80-80808000
rotate 1.047

curve to80-80808000
stroke

Figure 4 shows a patch to create this image. There are various ways to enter the
messages, but the message box is probably the simplest. This lets us use an uzi to
produce repeated steps.

Peter Elsea 1/7/13 3

Mgraphics

Translation and rotation may seem an awkward approach to drawing, but it's really
like turning your sketchpad to get a comfortable pen angle. The coordinates can be
put back with the command identity_matrix.

L
tbbb
Ll
uzi6
X T——
stroke curve to 80-80808000, translate 160 120,
. rotate 1.047 move to 00
gmetro 33.3 J =
J =3
3\
jit.mgraphics 320 249
click to clear
XL
patcher reset
, s
Figure 4.

The patch of figure 4 illustrates the three major phases of drawing any image:
¢ Set up the context (source and transforms)
* Create the path
* Stroke orfill

Here these phases are managed by the output of a trigger object. Note that [have
stolen the reset subpatch from the help file. We'll explore what's in there a bit later.

Source Color Commands
The first phase of drawing is to set the source color. Here are the most pertinent
commands: (Letters like r g b indicate arguments to the command)

set_source_rgbrgb sets the entire source area to a single opaque
color. Argument range is 0.0 to 1.0.
set_source_rgha rgba Sets source to single transparent color.

These are the most often used source commands. The color you select here will be
used for following paint, stroke or fill commands.

Peter Elsea 1/7/13 4

Mgraphics

Paint commands
You can transfer the entire source to the canvas with the paint command.

paint Fills canvas with source color. If source is
transparent existing image still shows
through.

paint_with_alpha a Fills canvas with source color using alpha

supplied as argument. Any previous drawing
will still show through. If source is
transparent, the source alpha is multiplied by
the argument.

Paint is the only way to set the entire canvas the same color. To get a black
background do this:

set_source_rgb 0 0 0, paint

The arguments 1 1 1 will produce a white background. We'll visit more source
commands later.

Path Commands

A path is a series of instructions. The instructions are built up in a list until a stroke
or fill command is executed (or new_path, if you want to discard some instructions
without drawing them). The first command is usually move_to.

new_path Clears all unexecuted path instructions. The
drawing cursor is left at 0 0.

move_to Xy Moves the drawing cursor to the location x, y.

rel_move_toxy Moves the drawing cursor x points right and

y points down. (Use negative x and y to move
opposite direction.)

line_toxy Defines a line from the current cursor to x, y.
rel_line_toxy Defines a line from the current cursor that
extends x points right and y points down.
close_path Adds a straight line from the current point to
the location of the last move_to.
path_roundcorners cr Rounds the corners in the current path with a

radius of cr. A corner is any join between
segments. Note that a line_to the start of
another line does not create a join- the
command close_path should be used to finish
polygons if you want to round them.
arcxcycral a2 Defines an arc that is drawn clockwise. xc and
yc define the center point, and r is the radius.
These define the staring point. If the cursor is

Peter Elsea 1/7/13 5

Mgraphics

arc_negative xcycral a2
ovalarcxcycrxryal a2

elipsexywh

rectanglexywh

rectangle_rounded x y w h ow oh

curve_to x1y1 x2y2x3y3

rel_curve_tox1ylx2y2x3y3

set_line_ width w
set_line_cap type

set_line_join type

Stroking and Filling

elsewhere, an unintended line will be added.
(new_path will eliminate this.) al and a2
define the starting and ending angle. The
angle is in radians, and 0 is at the rightmost
point of the (complete) circle. To calculate
radian values, divide 2pi by the fraction of a
circle you want. Important points are 1.57
(bottom) 3.14 (left) and 4.71 (top). If you fill
an incomplete arc, the fill ends on a chord
between the endpoints.

Same as arc, but draws the other way
(counterclockwise) around the circle.
Similar to the arcs, but the radius for x and y
can be different, resulting in an oval.

Defines an ellipse within the box with the
upper left corner at x y, width of w and height
of h.

Defines a rectangle with the upper left corner
at x y, and width of w and height of h.
Defines a rectangle with rounded corners.
The rounding is as if you took an ellipse of
size ow by oh, cut it into four parts and used
these for the corners.

Defines a Bezier curve from the current
cursor location to x3,y3, using x1,y1 and
x2,y2 as control points. The control points
determine the direction of the ends of the
curve as well as the general shape. (The
curve does not go through the control
points.)

Defines a Bezier curve, with all x and y values
relative to the current cursor location.

Sets the line width to w pixels.

Sets the style for line endings. Type may be
butt, round, square.

Sets the style for line joints. Type may be
miter, round or bevel.

Stroking and filling are the final steps of drawing. As seen in figure 2, stroking
produces lines and filling produces areas. Stroking will make all path segments
defined since the last stroke (or new_path) command visible. The path is then
discarded, unless the stroke_preserve command is used. Fill is the same way, the
path is discarded unless fill_preserve is used. If you want to both stroke and fill a
path (or vice-versa) use the preserve variant of the first command.

Peter Elsea 1/7/13

Mgraphics

Strokes and fills copy the color from the source based on destination coordinates.
The stroke_with_alpha variants allow you to specify transparency with an argument.
The argument is multiplied by the alpha of the source.

If you fill an open path, the fill will be clipped to a line from the end to the beginning

of the path. (Move_to defines endings and beginnings.) Figure 5 shows two filled
open paths.

Figure 5

Stroke and fill commands:

stroke Paint path with source colors, clearing the
path afterwards.

stroke_preserve Paint path with source colors and leave the
path for further operations.

stroke_with_alpha a Stroke the path, using the alpha provided.

stroke_preserve_with_alpha a Stroke and preserve the path using the alpha
in the argument.

fill Fill current path with source colors, clearing
the path afterwards.

fill_preserve Fill current path with source colors and leave
the path for further operations.

fill_with_alpha a Fill the path using the alpha in the argument.

fill_preserve_with_alpha a Fill the path using the alpha in the argument,

preserving the path.

Transforms

As I discussed above, a lot of the power of mgraphics comes from the ability to
change the coordinate system prior to defining part of a path. Figure 6 shows the
possibilities-- a translation moves the origin horizontally and vertically, and a
rotation rotates the coordinates around the origin. Scale changes the spacing of the
coordinates. The command identity_matrix puts the origin back. In absolute mode
the origin is at the top left of the matrix. In relative mode, the origin is in the center.

Peter Elsea 1/7/13 7

Mgraphics

Normal Translated 160 120 Rotated 0.78 Scaled 0.5 0.5
Figure 6.

There are four transformations available. These are cumulative, so they affect
further transformations as well as path commands.

identity_matrix Restores the coordinates to default.

scale sx sy Changes the spacing of the coordinates. X
values are multiplied by sx, Y values are
multiplied by sy.

translate tx ty Adds tx to all X values and ty to all Y values.

rotate n Rotates the coordinates by n radians.

Advanced Transformations

If you understand the math behind these transformations, you can create your own
with the set_matrix command. This does not refer to jitter matrices, but rather the
math matrix used in the underlying affine transformation used on the path
coordinates. (That is a tutorial for another day.) You can easily save the matrix
created by a series of transform commands however. The command get_matrix will
report the current matrix from the right outlet. I capture that in a message box,
change the preamble to set_matrix and I have a command ready to use.

set_matrix xx yy yx yy x0 yO Set up the current transform matrix in the
form:

xx xy xO

yx yy yO
0O 0 1

transform xx yy yx yy xO yO Multiplies the current transformation matrix
by the values given. This has the same effect
as repeated commands.

get_matrix Returns the current transform matrix.

Even if you don't understand the math, you can discover some interesting
transforms by trial and error. For instance, the identity matrix?is [1 0 0 1 0 0].
Change thatto [1 0.3 0 1 0 0] and you will get a transform that steps x right by 0.3
for every step in the y direction (shear transform).

2 j.e. a transform that makes no change.

Peter Elsea 1/7/13 8

Mgraphics

Text

Text can be added at any point in the drawing. There are two basic commands:
show_text and text_path. Both are followed by the desired text in double quotes. (If
you need to create the text on the fly, the sprintf object with the symout argument
may be the best tool--see my tutorial Max&ASCIIL.) Show_text will post the text
immediately at the current cursor position. This will not clear the path, but it will
move the cursor. text_path adds the text to the current path to be included in the
next stroke or fill. Stroke produces the outline of the path text, as shown in figure 7.
Current colors and transforms apply to both styles of text entry.

this i dome teat

his i Some teat

e b @ paily &) ey

this 6 a path, of reat

Figure 7.

When working with text, you often need to determine where the cursor is after the
text is shown (this will vary with font), as well as where it is safe to draw. The
text_measure command will report the width and height of any text included as an
argument. The font_extents command will show how much clearance to allow above
and below the text baseline. Note that these numbers may be slightly inaccurate for
some of the fancier faces.

Text commands

show_text "theText" Immediately posts the text at the current
cursor position. The text is stroked and filled.
text_path "theText" The text is added to the current path.

select_font_face name slant weight Chooses the font to use. Names include all
installed fonts. Slant may be normal or italic,
and weight may be normal or bold.

font_extents Reports ascent, descent and height from the
right outlet with the prefix font_extends.

text_measure Reports the width and height of a rectangle
enclosing the text with current settings.

getfontlist Lists all installed fonts at the right outlet,

with the prefix getfontlist. This is really
awkward to use. The fontlist object with a
umenu (as illustrated in the fontlist help
patcher) is much more convenient.

Peter Elsea 1/7/13 9

Mgraphics

Source Patterns

The source can be more complex than a simple color. Gradient patterns can be
specified and images can be loaded from files. To generate a pattern, you first
specify a vector for the gradient. That's a line from Xo,Yo to X1,Y1. This defines a
direction and length for the color change. You then add "color stops" along the
vector to specify the colors to use. Color stop positions are specified by proportion
of the vector. A stop at 0 is at the beginning of the vector, a stop at 0.5 is the middle,
and a stop at 1 is the end. Figure 8 illustrates the effects of color stop position. The
gradient vector is from 60, 40 to 260, 200. The stops on the left image are at 0 and 1,
the stops for the right image are at 0.25 and 0.75.

Figure 8.

Actually, in order to produce the right image, | had to establish a red color stop at 0
in addition to one at 0.25. [don't know if this is a bug or undocumented behavior,
but it's probably always a good idea to clearly define the ends of the vector. Figure 9
shows how the gradient affects fill and stroke.

Figure 9.
When you create vectors, you give them a name, and they are saved in the current
drawing context. To use them, use the command set_source with the pattern name.

Gradients can also be radial, as in figure 10.

Peter Elsea 1/7/13 10

Mgraphics

Figure 10.

Radial gradients are also created with a vector. The beginning of the vector will be
the center and the end of the vector will be the circumference of the gradient. As
with the linear gradient, color stops define the color at proportional points along the
radius. The right image was defined with a vector from 80, 120 to 240, 120 and
color stops at 0 (red) 0.5 (green) and 1 (blue). [Note: there is a third type of
gradient, in which the colors are mapped from the circumference of one circle to
another. The pattern_create_radial command actually requires enough arguments to
perform this function, but it is not currently working.]

Gradient Commands

pattern_create_rgba name Creates a solid color with the name given.

pattern_create_linear Creates an uncolored gradient with the name

name x0y0 x1y2 given along the vector x0, y0 x1,y1.

pattern_create_radial Creates an uncolored radial gradient with a

name x0y0rOx1ylrl radius defined by x0,y0 x1,y1.r0 and r1 are
non functional but required.

pattern_add_color_stop_rgba Adds a color stop to the named gradient at

nameprgba proportional position p.

set_source name Sets the named pattern as the drawing
source.

pattern_destroy name Disposes of the named pattern. You can add

as many color stops to a gradient as you wish,
but the only way to get rid of them is destroy
the pattern and start over.

pattern_set_extend name type Sets what happens in the area beyond the
patter's defining vector. Types may be none,
repeat, reflect, pad. [This feature is not
currently implemented.]

pattern_get_extend name Reports the type use in the command above.

Peter Elsea 1/7/13 11

Mgraphics

Images as Source

Images can be drawn directly into the source or destination. Images can come
directly from files or from a named matrix. [prefer the latter as it provides a
convenient way to modify the image size. There are several ways to paint images:

image_surface_draw_fast image

image_surface_draw image

image_surface_create
name image w h

set_source_surface image

pattern_create_for_surface name wh

image_surface_draw_fast

set_source_surface
Figure 11.

This will paint the image directly to the
output. There is no rescaling if the sizes don't
match.

This will paint the image to the output using
the transformation matrix for offset and
scale. However, if the transformation matrix
includes a rotation, nothing is drawn.

Creates an image surface from image with the
supplied name and rescaled to size. The name
can be used in drawing or source commands.
Draws the named image to the source, ready
to use with paint, stroke, and fill. If the image
is small, it will be repeated.

Acquires an image from location wh and
loads it into a source pattern with the
supplied name. It can be used for drawing
with the surface_draw commands or set as
the source for paint, stroke and fill.

pattern_create_for_surface

Peter Elsea 1/7/13

12

Mgraphics

Figure 11 shows the effects of the draw and create functions (the latter after a paint
command). Figure 12 shows the result of stroke and fill after the
pattern_create_for_surface operation. This is the most flexible, because you can load
a variety of images with their own names.

)

Figure 12.

Source transforms

You can also set transforms to use with patterns or images that have been created
for surface. These transforms are similar to the path transforms, offering offset,
scale and rotation functions. However, it is a quirk of the underlying graphics
package that the arguments for pattern transforms are opposite those for paths. The
signs for offset and rotate are negative and the scale is inverted.

* To offset the pattern origin to 160 120, use -160 and -120.
* To rotate the pattern clockwise, use a negative angle.
* To scale the pattern by 0.5 use 2 as the argument.

This is all because the transforms are applied after the pattern is created, not before,
as with paths. Once a pattern has been set as source, no more transforms may be
made. Figure 13 shows these effects. They may be combined.

Orlglnal Translate 160 -120 Scale22] Rotate 1047

Figure 13.

Commands

pattern_identity_matrix name Removes all transforms from the named
pattern.

pattern_translate x y Moves pattern origin to -x -y.

pattern_scale sx sy Scales pattern size by 1/sx 1/sy.

pattern_rotate a Rotates pattern image by a radians counter-
clockwise.

Peter Elsea 1/7/13 13

Mgraphics

pattern_get_matrix Reports the current pattern transform
matrix.
pattern_set_matrix Sets the pattern matrix to
xx Xy yx yy X0 yO
xx xy xO
yx yy yO
0 O 1
Miscellany

There are several commands that are still under development at the time of this
writing. These are things that are not functional, or require some not-yet-
implemented functions to be of any use.

scale colors

scale_source_rgba r g b a will affect the next set_source_rgha command, scaling all of
the values provided. For instance if you send scale_source_rgba 0.5 0.5 0.5 1,
set_source_rgba 1 1 1 1 will produce a gray. The scale commands are cumulative, so
if scale by 0.5 is followed by a scale by 2, you will get back to the original color.
However, if you ever scale by 0, set_source_rgba will not work properly until the
jit.mgraphics object is reset. (You can reset any object by editing it-- just type in a
space.)

push_group

groups are a powerful concept that will let us make drawings from earlier drawings
or use our drawing as a source. However, this set of functions is now incomplete, so
push_group just stops all drawing.

Save context

Save and restore are related functions. If you save a drawing context, it can be
restored later. However, if you restore before saving, or restore more times than
you have saved, the object just stops working.

Mgraphics is still a work in progress. Watch for updates.

Peter Elsea 1/7/13 14

