Fuzzy Logic and Musical Decisions

Fuzzy Logic and Musical Decisions

Peter Elsea, University of Calfornia, Santa Cruz
© 1995, revised 2013

Representation of Pitches as Sets

In the Max environment, pitches are necessarily represented as numbers, typically
by the MIDI code required to produce that pitch on a synthesizer. We must begin
with and return to this representation, but for the actual manipulation of pitch data
other methods are desirable, methods that are reflective of the phenomena of
octave and key.

A common first step is to translate the midi pitch number (mpn) into two numbers,
representing pitch class (pc) and octave (oct) this is done with the formulas:

oct = mpn / 12
pc = mpn % 12

The eventual reconstruction of the mpn is done by:
mpn = 12*oct + pc
In this system pc can take the values 0 - 11, in which 0 represents a C. Oct typically

ranges from 0 to 10. Middle C, which is called C3 in the MIDI literature, and C4 by
most musicians, is octave 5 after this conversion.

The major drawback of this representation is that it does not easily reflect the
nearness of B (pc=11) to C (pc = 0). Stating that C is above B is easy enough. The
relationship:

pabove = (pc + 1)%12
holds true in all cases, but the reciprocal operation:
pbelow = pc-1

breaks when the zero boundary is crossed. The proper expression is
counterintuitive:

pbelow = (pc+11)%12

The extra constraints of key and tonality are even more awkward to account for,
and chords are difficult to manipulate.

Peter Elsea 5/5/13 1



Fuzzy Logic and Musical Decisions

A more flexible system of representation is the pitch set. A pitch set has twelve
members, which are either 0 or 1:

{10000000000 0}

The 1 represents the presence of the pitch in the set, which runs from C
chromatically to B. This one is {C}. For any other pitch, the 1 is placed in the location
that corresponds to the pitchl. Any pitch can be produced by rotating

{C} right by the desired interval?.

The concept "pitch below" is produced by a left rotation, and is not upset by zero
crossings, as:

{10000000000 0}
produces
{0000000000O0 1}

The Max object that produces these sets is Lror3, which will rotate left when given a
negative rotation value. Lror is designed to default to the C pitch set, so any pitch set
is easily produced by simply applying the pitch class to the left inlet of an empty
Lror object.

Pitch sets can represent chords.

{10001001000 0}

This set is a C major chord, and can be rotated to produce the other major
chords.

The concepts of key and modality can also be represented by a set. This is the C
major scale:

{10101101010 1}
All major scales can be produced from this by rotating (key) steps.

It is easy to exclude any pitch that does not belong to a key by a simple
multiplication* between the scale set and the pitch set.

1 The first location in a Max list is location 0.

2 Intervals are counted in half steps. A perfect fifth is an interval of 7.

3 Many of the Max objects discussed, including all beginning with L, are from my
expanded set of list processing objects. These are indicated in bold type the first time
they are mentioned. They should be available from the same source as this paper.

4 Any operation between sets is done member by member, so the pitch C survives
multiplication between the C and Cmaj sets, but the pich C sharp would not. In set
parlance, we are saying the the intersection of {Csharp} and {Cmaj} is empty

Peter Elsea 5/5/13 2



Fuzzy Logic and Musical Decisions

We can generate most chords in a given key. Start with a chordgen set, which is the
union of the major and minor chords:

{10011001000 0}

Rotate it to the desired position, say E (+4):

{00001001100 1}
Finally, multiply it by the key set:

{00001001100 1}
{10101101010 1}

{00001001000 1}

This produces an E minor chord.

These operations can be accomplished by two Max objects, Lror initialized with
the chordgen set, and Lmult. (You will discover that this fails to generate the
diminished chord on B. This problem can be solved with a rather complex patcher
that, although interesting, is the beginning of a finally unproductive path. I will
instead lay some more groundwork and return to the subject later.)

Any list of pitch classes can be converted to a pitch set by the Ltoset object. Sets
may be converted back to pitch classes by the Ltop object, which reports the
positions of the highest n values of a list. In the example above Ltop 3 would give
the three chord members 4, 7, 11.

Crisp and Fuzzy Logic

The preceding exercise was really an example of Boolean logic. The multiplication of
the scale set by the chord generator is equivalent to the logical AND operation,
which gives the intersection of two sets. In traditional logic systems, an item is
either a member of a set or it is not. G sharp is not a

member of the C major scale, so it is represented by a 0 in the C major scale set. G is
and gets a "truth value" of 1.

In Fuzzy Logic it is possible for items to have partial membership in a set. In other
words, you might indicate a C minor scale like this:

{10110101100.7 0.6}
Here the pitches C, D, E flat, F, G, and A flat are definitely members of the C minor

scale. However, there are two different possibilities for the seventh degree. Some of
the time B flat is used, sometimes B natural. A fractional membership value reflects

Peter Elsea 5/5/13 3



Fuzzy Logic and Musical Decisions

these possibilities. Note that this is not a probability. That would imply that you
knew how many lowered and how many raised sevenths there were going to be.
These fractions merely indicate that either is possible, and that the rules for
generating the pitches favor lowered sevenths somewhat>.

Fuzzy logic makes it simple to represent concepts that are more linguistic than
mathematical. For instance, in crisp logic®, the concept "just below C" may be
expressed by:

x <12) & (x > 9

This implies that we do not consider A to be just below C, and that B and B flat are
equally just below C. But the usual meaning of the statement "just below C" implies a
gradation of below C-ness that may include A in some circumstances. This can be
represented with the fuzzy set:

{0000000000.20.51}

Again, the membership values do not have to add up to anything, or fit any regular
curve. They simply reflect our judgement of how well each pitch fits the criterion of
"just below C". We can contrast this with the gentler constraint "below C" which
might be represented by:

{00000000.30.60.70.91}

This is a bumpy curve that includes the feeling that there is a bigger jump between
scale degrees than between the major and minor versions of the same degree.

The next linguistic step is to combine two descriptions. To find notes that belong to
both sets "below C" and "in C minor" we find the intersection of the two sets. In
fuzzy logic, intersections are most commonly found by taking the lower value of the
equivalent members of each set. This is performed by the Lmin object.

The calculation of "below C in C minor" would yield:
{10110101100.7 0.6}

Lmin
{0000 0O00O0030.60.70.91}

{00000000.30.600.7 0.6}

The result would be B natural.

5 These fractions are basically made up to fit the situation. It is the relative strengths of
the values that is important.
¢ Any logic that is not fuzzy is crisp.

Peter Elsea 5/5/13 4



Fuzzy Logic and Musical Decisions

Figure 1. is an example of this technique in use:

® OO0 ¢ chordgen

C-2] root
tii
| B chordgen

Lror 1001100510000 rscale

C major scale
Lmn101011010101

Ltop 3 convert set to list

I:match find root in list
Linterp0 2 1 determine how to rotate.

Lror - rotate to root position.

q prepend set
T
4711

B0 E 08880

Figure 1.

The ChordGen patcher will produce the chords of the C major scale. To solve the
problem of the diminished chord on seven, we modify the chordgen set to include
the possibility of a diminished fifth,

{1001100.51000 0}

rotate it to the B position and do the same calculation as before:

{p01100.51000 0 1}
Lmin

{10101101010 1}
{001000.500000 1}

This produces the pitches 2, 5, 11 as required.

Peter Elsea 5/5/13 5



Fuzzy Logic and Musical Decisions

The rest of the example is a chord sorter to leave the chord in root position. To do
this I use Lmatch to find the position of the root in the pitch list. (Lmatch returns
the position of one list or a constant within another list.) If no match is found
there will be no output at the left outlet, so ChordGen will not produce chords
foreign to C major.

The position of the root in the unmodified list is 0 for root position chords, 1 for
second inversion, and 2 for first inversion.

To get these into the proper order I rotate them using instructions stored in the
Lbuf object. Lbuf will return the value found at a particular position in a list.” In
this case, the values are the ones necessary to rotate the chord into root order by
the Lror object.

The ChordGen patcher will work with any scale.

Reasoning with Fuzzy Logic

The greatest advantage of fuzzy logic is the ease with which tasks may be translated
into terms the computer can deal with. Most problems can be solved with
mathematical models and advanced probability, but the construction of such models
is difficult and the effective approaches are not often obvious. In addition, such
models usually do not work at all until they are complete, and later addition of new
factors can be a monumental task.

Fuzzy models, on the other hand, are a fairly straightforward translation of the
linguistic statements of a group of rules. The model begins to function roughly as
soon as two or three rules are stated, and is easily refined by tuning up the sets or
by addition of more rules. In practical industrial applications, the fuzzy approach
tends to lead to simpler, more easily maintained code in a shorter development
time than other techniques.

An example of fuzzy reasoning.

To show how fuzzy procedures are applied to musical problems, I will continue with
the issue of chord inversions. The choice of a chord inversion depends on many
factors, the quality of sound desired, the avoidance of parallel fifths, fingering
difficulties, and so forth. We begin the design process by formulating a set of rules as
if..then... statements. Assume we want to choose inversions that will keep common
tones where possible, that will not follow a root position with another root position,
and will otherwise change inversions from time to time. The following rules state
these criteria:

* Ifroot position keeps common tones, then root position.

7 Lbuf simply stores lists. It can be initialized with a list, which makes it easy to see
what is happening.

Peter Elsea 5/5/13 6



Fuzzy Logic and Musical Decisions

e Iffirstinversion keeps common tones, then first inversion.

* Ifsecond inversion keeps common tones, then second inversion.

e Iflast position was root, then first inversion or second inversion.

¢ Ifthere have been too many first inversions in a row, then root or second
inversion.

¢ Ifthere have been too many second inversions in a row, then root or first
inversion.

The order in which the rules are listed makes no difference, as we are going to test
all of them and combine the results. The final answer should be a number that can
be used to rotate the chord to the desired inversion: 0 to produce a root, 2 to
produce first inversion, 1 to produce second.

All of these rules have a predicate (if...) and a consequent (then...). We evaluate the

predicate of each rule to find out whether to add the consequent into the combined
result. If the predicate is crisp (as in "if last position was root") the consequent will
either be reported or not.

In this example, each consequent is a set of three members. The value for member 0

is a vote for root position, the value in 1 is a vote for first inversion, and the value in

2 is a vote for second inversion. The consequent "then root or second inversion" will
output the set {0 1 1}. The mechanism in figure 2 will do the work:

1

int current Inversion

sei§
T
011

Figure 2.

If the predicate is fuzzy ("too many first inversions") the truth value extracted from
the fuzzy set is used to modify the consequent in some way. One common
modification is to clip the consequent set to the truth value obtained from the
predicated rule; that is, make all members of the consequent set lower than the
truth of the predicate. That is illustrated graphically by figure 3.

Predicate Consequent

Input Result
Figure 3.

Peter Elsea 5/5/13 7



Fuzzy Logic and Musical Decisions

The triangles® represent fuzzy sets for the predicate and the vertical lines the
consequent. Some input value is used to derive a truth value from the predicate,

which is then used to truncate the consequent. Figure 4 shows a Max mechanism to
do this.

|3 | *Too Many"

E [P
Lnterp00020406‘l
Lm

n101

/

040.04
Figure 4.

In this operation, Linterp is used to find the value at a particular position in a set.
Linterp can also find values between members by interpolation. That provides a lot
more accuracy than these coarse examples suggest. Lmin, as we have seen gives
intersections between sets. When the input to Lmin is a single value, the output set
is truncated at that value.

Once all the rules have been evaluated, the answer is then derived from the
accumulated consequences, the solution set. Many fuzzy applications involve fifty to
a hundred rules, and the solution sets can get quite complex. Reducing these to an
answer is called "defuzzification", and there are many approaches. One of the more
common ones is to take the position of the maximum value produced in the solution
set.

Figure 5 shows how these principles are applied to the problem of finding
inversions.

8 In Fuzzy Logic textbooks, consequent sets are represented by triangles too. In music
the consequent sets are usually discontinuous, but the fuzzy techniques work just the
same

Peter Elsea 5/5/13 8



Fuzzy Logic and Musical Decisions

® 00 Figure 5
ﬁ chord list in root order
4
thbl E
L—j_ If last was root If last was not root
int then 6 or 6-4 then root
i -
sel g_f 011 0100
-

—

Linterp 0 0 0.2 0.4 0.6 1

Lmin101

~

if too many 6-4 then root or 6

sel2 | © Linterp 0 0.2 0.4 0.6 1
1 A

counter

Lmin110

\ < -~
ﬁ =y
. — flush Laccum 1
Lror\}buf 021 l | P
L Ltop 1
o] > o Y,

B0 & 6 8 8 & 80

Figure 5.

The simplest rule to evaluate is the one about not repeating roots. In this case we
can fire the result of the last cycle into the select object. If that result was 0 (root
position), the list {0 1 1} which is the union of 6 and 6-4° will be sent to the
accumulator.

The concept "too many" is definitely a fuzzy construct. It is represented by a set with
members that describe how much "too many" each is. For instance {0 0 0.2 0.4 0.6
1} allows one or two repetitions, but becomes increasingly more resistant up to 6.
To produce the consequent of the rule, the result of the lookup is used to truncate
the set "root or 6-4" {1 0 1}. The Lmin object will produce a set like {0.2 0 0.2},
taking the lower of each pair of values between the input and initialized set.

99 Note for those to whom music theory is a mystery: "6" is a common shorthand for first
inversion chord, and "6-4" indicates second inversion. A root position C chord has the
pitches in the order C-E-G (from the bottom up) or C-G-E. First inversion is E-G-C or E-C-G,
and second is G-C-E, or G-E-C. The second version of each is called open position, and a
complete inverter would cover those too. This one doesn't

Peter Elsea 5/5/13 9



Fuzzy Logic and Musical Decisions

The rule for "too many 6-4" is identical except for the consequent.

The three result sets are added in the Laccum object, which is then flushed into
Ltop 1 to reveal the winner. That value is transformed and fed back to another Lror
(which is holding the chord in question) to produce the final output. The value is
also saved in an int object for the next iteration.

Even at this early stage, the model will begin to function in a rudimentary way,

flipping between root and first inversion. This allows testing of the control aspects
of the patcher while it is still relatively uncomplicated. In this case, testing showed
that a minor modification was needed to improve performance. An additional rule

e Iflast position was not root, then root.

insures that there is always an output from this part of the patcher. (It can be
removed later when there is more information being processed.) It is given a very
low weight, so that the main rules are not hindered.

Figure 6 shows how the rules involving common tones were included in the patcher.
The L== object compares two lists and returns a value between 0 and 1 that reflects
the degree of similarity'0. To decide if an inversion of a new chord will have any
tones in common, we generate the inversion and compare it with the last chord
output. If there are no common tones, the result will be 0. One common tone gives a
0.3, two 0.6, and if all tones are the same the output is 1. These weightings work well
with the values produced by the previous inversion rules. Note that the consequent
set for 6-4 is contains 0.7 instead of 1. This was edited to discourage second
inversions slightly.

10Tt checks members of the input list against the same member of stored list. It
then reports
(number of matches)/ (length of input).

Peter Elsea 5/5/13 10



Fuzzy Logic and Musical Decisions

® OO [inversions]

: root
chord ﬁ

If last was root then 6 or 6-4

4 B 2L 1 ~N
tbbl| int If last was not root then root Ei_newrule
1

[ 11 0-0.4

if too many 6 then root or 1-4

sel 1[0 Linfer 00 0.2 0.4 0.6 1
I~ l:fmin 101
counter

el S T

if too many 6-4 then root or 6

sel 2 [0 Linfer 00 0.2 0.4 0.6 1

I - |1

counter Lmin 11 6
Nam 2
Lror flush
root L== mm 10 0 Laccum 1
ps 11

5 -
Lror 2)6 fL== Lmin 0 1 0 Ltop 1
J _J‘ JL=o

o Lror 1 6-4 ‘ ‘ LmnOO1 Jl._infer02

favor chord with most common tones

A0k & 68 8 & &0

Figure 6.

y
1

The newrule sub-patcher in the upper right corner of the inversions patcher shows
the flexibility of the fuzzy logic methodology. Since evaluation is always based on a
sum of rules, it is easy to add new ones. Experimentation with the working model
showed that the progression V-1 needed some special treatment. If the V chord
happened to fall in root position, the tonic chord would be a 6-4, as the logic strives

Peter Elsea 5/5/13 11



Fuzzy Logic and Musical Decisions

to keep common tones. The new rule simply detects a root of 7 followed by 01! and
injects a set designed to skew the outcome toward root position.

e Ifprogressing is dominant to tonic, then root.

® O O [newrule]

if last chord was dominant and this is tonic, then bang.

ﬂ root in r key
e

f tonic l dominant

Lror100000000000 Lror0O00000010000
‘t y —

R

P B
Bucket

Lbuf 100000000000 Lbuf 000000010000
B ]

I,

1—1

a-—igl—i

alwles 0 Q0 8 & L0

Figure 7.

Figure 7 also illustrates how working with pitch sets can keep patchers simple. This
crisp version of this patcher involves considerable mathematical gymnastics to
allow for changing key.

At this point, the pitch classes are showing up in the output list in the desired order.
The only thing left is to get them into the proper octave and play them. There are a
variety of simple crisp ways of doing this, but [ am going to indulge in a little more
complexity to illustrate another point in fuzzy logic, as shown in figure 8.

11 Remember, pitch class 7 is the fifth scale degree.

Peter Elsea 5/5/13 12



Fuzzy Logic and Musical Decisions

® O O addoct
ﬂ if third pitch is below first pitch or below second pitch add 12 to third pitch
%I | I if second pitch is below first pitch add 12 to second pitch
T below second pitch
unpackO‘I Lshnftr‘IOOOOOOOOOOO

] below first pitch
unpack 012  [shiftr 100000000000

Lmax Below first pitch or below second pitch.

L1

Lbuf Lbuf

4 =5
Lmult0 120 Lmult00 12
1l —7

Lmax

|

Ladd

I

Ladd 48
7

g
A0 Cx 8 8 8 8 8 Q0

Figure 8.

The rules for deciding what value to add to the pitch class to wind up in the proper
octave are simple:

* Add 48 (or another octave offset) to all three pitches.

* Ifthe second pitch is equal or below the first pitch, add 12 to the second
e pitch.

e If the third pitch is equal or below the first pitch or the second pitch, add
* 12 to the third pitch.

Adding a constant to a all members of a list is simple with the Ladd object.

To generate a set for "equal or below a pitch" we use the Lshiftrl? object on the C
pitch set. Thus the set "equal or below E" is produced as shown in figure 9.

12 ] realize the name is a little misleading, but the Lshiftr object shifts lists to the right. In
the shift operation, all values are moved to the right, and values falling off the right end are

Peter Elsea 5/5/13 13



Fuzzy Logic and Musical Decisions

| 4 | Pitch
Lshiftr 100000000000
k
T
111110000000
equal or below

Figure 9.

This is fed into the Lbuf object, which will report a 1 if a requested pitch is equal to
or below the first pitch.

We unpack the input list to apply the first and second pitch to Lshifr objects.13
The output of the object labeled "below or equal to first pitch" is sufficient to
test the second rule.

For the third rule, we need to evaluate "below the first OR below the second". The
word OR implies a union. In fuzzy logic, unions are made by taking the greater value
for any member in the two sets, here done by the Lmax object.14

We have already dealt with the AND operation. The chordgen patcher described
earlier really evaluates the rule "in the (root) chordgen set and in the Cmajor scale.”
As we have seen, AND implies the intersection of sets and is accomplished with the
Lmin object.

Using OR or AND to link simple tests, we can build rule predicates that are as
complex as we wish.

To complete this operation, we evaluate each rule with Lbuf objects. Note that the
list is unpacked again to produce the left inputs. This is necessary for timing
purposes. If all of the pitch values were taken from the same unpack object, the rule
for the third pitch would be evaluated before the union derived from the second and
first pitches was constructed.

The results of these evaluations will be 0 or 1. They are multiplied by sets
containing 12 in the appropriate position, and the union of the two resultant sets is
added to the original list.

discarded. The places freed up at the left end are filled with the leftmost value of the
starting set.

13 [t is not really necessary to initialize the Lshftr objects with the C pitch set, they default
that way. It is included here to make the operation clearer.

14 These sets happen to be crisp, because below is taken in its literal sense, but if we were
looking for the fuzzy concepts "just below C or just below G" with the sets described earlier,
the Lmax method would also be appropriate.

Peter Elsea 5/5/13 14



Fuzzy Logic and Musical Decisions

The output of the addoct patcher is a list of the pitches desired in the chord. This
may be passed through an iter object and fed to makenote in the usual manner for
producing notes in Max. However, more sophisticated performance is desired here.
The criteria are:

e New chords should curtail old chords.
e Common tones between chords should not be re-articulated.
e All tones should end after a preset duration.

As you have probably begun to gather by now, once you have stated the rules of a
process, you are halfway to a working patcher. Figure 10 shows how the makechord
patcher developed.

The clocker and associated objects merely count the milliseconds since a note came
in. If 2 seconds pass by, a bang is issued. This is a routine Max function.

The Lbuf object is used to detect any differences between the old chord and the new
one. Up to now, | have been using Lbuf as a means for interrogating a particular
member of a set. However, that is an incidental feature of Lbuf. Its main function is
to store sets. If a list is input to the left inlet of Lbuf, the stored list is output and the
new list is stored in its placel®.

To see which parts of the lists change, the last list is subtracted from the new list.
Then the absolute values are found, and Lhigh 316 is used to convert all non-zero
members of the result list to 1. This will create a control list that can be
multiplied by the chords. The old chord is itered (after the Os are removed) and
each note is paired with a 0, which will create a note off when sent to note out.
The new chord is treated the same way, but paired with a velocity value so a
new note will be generated.

If the timer should happen to go off, the last chord played, which was stored in
another Lbuf, is sent to the note off part of the output structure.

So far, the logic has been crisp. The fuzzy aspect of this patcher is simply that
the outputs of various rules are accumulated to create the final control set.
Again, that makes it easy to add features. In this case, the original criteria did
not insure that if the chord had timed out the next chord would be played in
full, so a new rule: "If time has expired, play all notes of the new chord" was
required. The timer simply feeds a control set of all ones into the Laccum.

15 Thus Lbuf is really a Bucket for lists.

16 The behavior of Lhigh could use some explaining. If applied to a list longer than its
argument, it reduces all but the highest (arg) values to zero. If applied to a short list, it
converts all non zero members to 1.

Peter Elsea 5/5/13 15



Fuzzy Logic and Musical Decisions

Likewise, the rule: "If root is tonic, play all notes" was found desirable after

some testing.

® OO0 [makechord]
L
tI | Ip_ Timer
eI 0 Time
c.:lLocker 2000 T expired
A\
Lbuf 000 2| i
u r key
- e frootis 5 7
e Lsub tonic, =0
elec restart T
changed Labs chord. sel 1
notes thgh 3 J- —
flush dadid
4

If notes Laccum

change, th h3 Once time has expired,

start new g restart with new notes.

ones.
1 [—— If notes
Lmult 11 1 Lmu|t1 11 change, When
I end old time e |
Lt‘ It O Lr It 0 ones. expires, Lbuf

end all I
notes. iter

|ter % |ter

qack 090 $1 0

A0k & 68 8 8

Figure 10.

a0

Figure 11 shows the master patcher. It takes notes in from a MIDI keyboard, applies
all the processes discussed, and sends the chords out. There is obviously room for
refinement, but even at this simple level it behaves in a very musical and
unsurprising manner.

Peter Elsea 5/5/13

16



Fuzzy Logic and Musical Decisions

® 00 o fuzzy_harmony
notein 1 Get root from keyboard
p— .
it"'pmt‘i Remove note offs
% 12 Reduce to Pitch Class
C-2 Result

ichordgen Find appropriate chord

Tinversions Invert for voice leading

addoct Move to desired octave

[ ¢

Tmakechor d Turn repeating chords

into sustaining ones

noteout Send notes to synthesizer

B0 @0 e 00

Figure 11.

Peter Elsea 5/5/13 17



Fuzzy Logic and Musical Decisions

Some more fuzzy concepts

Monotonic Reasoning

Many musical concepts are harder to express mathematically than would seem
apparent at first blush. Take as an example, mezzo-forte (mf). Literally, this
translates as medium-loud, a fuzzy concept if there ever was one. Musicians define
mf as softer than f, and louder than mp, which is louder than p.

If we consider that all these have a partial membership in the fuzzy set "loudness”,
we can place them in order and give them a membership that reflects common
practice:

Loudness
01 02 03 045 055 07 09 1
ppp PP P mp mf f If Viid

Dynamic

Notice that the values do not grow evenly. In actual performance, the difference
between mp and mf is not as great as that between mf and f.17 Also note that
ppp does not have zero loudness, since zero loudness would imply silence.

The usefulness of the fuzzy approach becomes apparent when we want to perform a
crescendo over n notes. We simply pick the starting and ending values and
interpolate from one to the other through n steps.

The Linterp object will do this. It accepts fractional indices and reports a value
interpolated from the previous and following entries. So if you feed 2, 2.2, 2.4,...3
into [Linterp 0.1 0.2 0.3 0.45 0.55 0.7 0.9 1]'8 You would get a smooth crescendo
from p to mp.!° The advantage of this over a more direct approach, like
assigning a velocity value to each dynamic and doing the math, is that this can
be applied flexibly to various situations.

For instance, consider two instruments with differing velocity to loudness
characteristics; one hits its loudest at velocity = 100 and the other maxes out at
velocity = 120, with a non linear velocity curve. You can code these two curves into
lists for the Lfind object:

[Lfind 0 0.1 0.20.30.40.50.6 0.7 0.8 0.9 1]

17 You are of course free to enter your own interpretation here, or to change values for
different situations.

18 Whereas [ have been using braces {} to indicate sets in math context, brackets [] are used
to indicate a Max object and its arguments.

19 [f you crescendo from p to f you do not get a linear change, but it is an interesting and I
dare say typical one. You may of course fiddle with this curve to suit your own needs.

Peter Elsea 5/5/13 18



Fuzzy Logic and Musical Decisions

[Lfind 0 0.05 0.1 0.150.2 0.3 0.4 0.6 0.7 0.85 0.9 0.95 1]

Lfind searches a list for the input value and reports its position. If the value falls
between two points, an interpolated fractional position is calculated. In this

case, multiplying that position by 10 gives a velocity equivalent to the loudness
desired??. We can use the loudness value calculated earlier to find the appropriate
velocity to send to the desired instrument.

The curves in Lfind can be written in simplified notation. That is because Lfind
expects a monotonic curve. If there are dips in the curve, a value may exist in two
locations. Lfind gets around this by interpolating between the first value it finds
that is lower than the desired value and the nearest higher value. Therefore zeros
within a curve are ignored, and you only have to enter the inflection points?l.
[Lfind 00.05000.200.4 0.6 0.7 0.85 0 0 1] would give the same results as the

second of the pair above.

Linfer uses this simplified notation also. Given a list with two non-zero values,
it will report an interpolated value for any intermediate position. An object
such as [Linfer 0.100001000.500000.1] is a very simple envelope
generator that can be reprogrammed by swapping lists around.

Fitting Vague Categories
One of the strongest features of fuzzy logic is that it allows classification of data
within vague guidelines.

As an example, take the problem of finding dynamic markings for a group of notes
input from a keyboard for transcription. The usual approach is to assign a range of
velocities to each mark; 40-49 is piano, 50-59 mezzo piano, and so forth. The flaw
in this method is that when groups of notes cluster around the edge of a range
the output will thrash between two markings. If the data for a phrase read 44,
51, 46, 58, 62, 67, 72, 74, most notes would get a marking, p , mp., mf, or evenf.
If we simply averaged the dynamics we would get 59.25, just

over the edge into mf.

The fuzzy approach is to assign every velocity a membership value in a set for
each dynamic. In figure 12 the sides of the triangles represent the membership
values?? in each dynamic set for the velocities across the bottom.

20 We have to shorten the list because the maximum size of a list in Lfind is 64. Besides, its
much easier to read this way.

21 The values for the Os are replaced with something that creates a straight line.

22 These are not the same numbers as in the previous example. Velocity from a given
instrument will have a specific membership in each of the 8 sets for dynamic marks. Each
dynamic has a membership in the set loudness. Loudness may be transformed to velocity

Peter Elsea 5/5/13 19



Fuzzy Logic and Musical Decisions

ppp pp p mp mf

W/\W

Flgure 12.

The sets overlap, so velocity 44 has both a membership value of 0.7 in piano and
a membership value of 0.4 in mezzo piano.

The solution set for this problem will have eight members, one for each
dynamic. The memberships in each dynamic set for each note in the phrase are
added to the solution set, and then all members of the solution set are divided
by 8 to get a set of averages:

{0 0 0.15 0.52 0.48 0 0 0}

The average amount of "pianoness" for our eight notes is 0.15. The average for mp is
0.52, and the average for mfis 0.48. The biggest average falls clearly within mezzo
piano.

The fuzzy approach makes it easy to add more factors to the classification, such as
giving more weight to notes near the beginning of a phrase. You would do this by
finding a value for "near the beginning" from a set that looked something like Figure
13.

]

O I I 1 I I I

Beginning End
Figure 13.

This value would be used to scale the dynamic memberships for each note
before adding them to the solution set. As you can see, the last few notes in a
phrase would not affect the dynamic marking. For the next step, you could
compare the starting dynamic with the dynamic found for the notes "near the
end" and if necessary insert a crescendo or decrescendo.

Fuzzy Numbers
The fuzzy number is central to fuzzy logic and reasoning. Basically, a fuzzy number
represents a concept similar to "approximately 5". It is a set of the type:

for a particular instrument, but loudness should be determined by more factors than the
dynamic marking.

Peter Elsea 5/5/13 20



Fuzzy Logic and Musical Decisions

{0000.2061060.200001}

where the one is in the position corresponding to the number, and the shape of the
flanking curve is appropriate to the application.

In music, intervals are fuzzy numbers. The concept "a second above" can have two
possible answers depending on the scale and the starting point. The interval a
second above is represented by the set:

{0110000000 0 0}

We evaluate the complete construct "a second above D sharp in E major" by rotating
"a second above" by three steps and then taking the intersection with the E major
scale:

{00001100000 0}

Lmin

01011010110 1}

result

{00001000000 0}

This set may be evaluated by Ltop if we want the answer (E) or accumulated with
other sets if we are building toward a more complex solution.

There is a matching set for a second below:
{0000000001 1}

as well as above and below pairs for all of the imperfect intervals. These could
be generated from the second by rotation, but it is probably most efficient to
have them stored in a coll object. Table 1 defines fuzzy sets for common
intervals above and below a given root.

F21900.91000000000 F2b (00000000001 0.9
F3/00010.90000000 F3b [0 00000000.9100
F4 100 00010.500000 FAb (00 00000510000
F5/0000000.910.500 F5b [0 00 00.510.900000
F6 | 0000000010900 F6b [0 00 0.910000000
F7100000000000.91 F7/b 100.91000000000
Table 1.

The Edge of Fuzziness: Normalization

Fuzzy logic is a well defined discipline, and we should not play fast and loose with
its conventions just because it deals with vagueness. However, some unique
properties of music and the practicalities of the Max environment sometimes
require us to do things that might raise an eyebrow in theoretical circles.

Peter Elsea 5/5/13 21



Fuzzy Logic and Musical Decisions

In fuzzy sets, all members are normalized to values from 0 to 1. This is an important
convention, and must be observed if sets derived from a variety of processes are to
be compared or merged. Generally, a normalization is performed after addition or
subtraction of sets, and may be appropriate after intersection in some cases.

However, if the addition is the final step in an accumulation process that will then be
evaluated by Ltop, normalization is not necessary. If a further intersection is to be
performed on the results of the accumulation (which often saves processing steps)
the Lmult object should be used instead of Lmin.

Another situation in which normalization is not needed is if the results will be
passed to a table or other object that does not deal with floats. In that case the set
needs to be multiplied by 10 or 100 and passed through Lround to insure that the
values are in an appropriate range.

[ have also found negative membership values to be of some use, particularly in the
case of suppressing unwanted repeats. Throwing the last pitch into Laccum with a
negative weight is a simple way of making repetitions unlikely.

Fuzzy Dice?

Fuzzy logic allows a vague description of the rules that will lead to a desired
outcome, but it is still highly accurate and repeatable, given consistent initial
conditions. However, in music composition, we do not always want the same
outcomes, so we often add some indeterminacy to the program.

The simplest way to add this indeterminacy is to play roulette with the sets. Figure
14 shows a technique for doing this.

L -
random 3

I .
Lror100

~—

001
Figure 14.

The result of this operation, when accumulated with a group of rule evaluations, will
randomly encourage one choice. The weighting of this random rule must be
carefully chosen to maintain the character of the rule set.

A more powerful way of including indeterminacy is to load a set into a table. The
LtoTab object is made specifically for this transformation, as it converts a list into a
series of coordinated addresses and values that will transfer the list contents to the
first locations in the table. Tables can only manage ints, so the set should be
multiplied by ten or a hundred and rounded off.

Peter Elsea 5/5/13 22



Fuzzy Logic and Musical Decisions

The bang or quantile function of the table object will then output the address of one
of the non zero members. The probability of getting any particular address is the
value stored there over the sum of all nonzero values. So, if you loaded the set: {5 0 0
020030000} into a table, 10 bangs should produce 5 Cs, 2 Es, and 3 Gs.

Indeterminacy with a higher level of organization can be achieved with a coll and
the unlist object. The patcher in figure 15 processes the empty signal ( a bang) from
the unlist object to choose a list from the coll. Unlist then produces one member of
the list at a time.

StarStop | | [(0 | Tempo
(> = = 1

drunk 123 expr 60000/($f1*24)

co!l :

. .:.-"’
metro 200

unllst S pulse

\J[’T Output
J
Figure 15.

This patcher will randomly work its way through rhythm patterns stored in the coll
object. The drunk object could be replaced by any rule evaluator, fuzzy or
probabilistic.

The Lchunk and Ltocoll objects are useful for loading lists into coll objects.

Peter Elsea 5/5/13 23



Fuzzy Logic and Musical Decisions

Integrating Fuzzy and Probabilistic Reasoning

Indeterminacy in fuzzy composition systems is most effective when it is used
judiciously at key points in the program. A simple composition engine may be
modeled as in figure 16.

|User Inputl | Progress Monitorsl

vy

|Fuzzy Evaluation of Situation [«

v

—>| Indeterminate Choicel
v

Figure 16.

This process is reiterative, with each output initiating and affecting the computation
of the next. There are four major components that determine the results:

¢ User input includes initial settings as well as real time events. It is important
that these inputs be accepted in terms the user understands.

* Progress monitors impose a temporal framework on the piece. This could be
as simple as a metronome, or some complex phrasing system with its own
user input.

* The Fuzzy evaluation rules incorporate the system's knowledge about the
piece and music in general. They will provide desired amounts of
predictability and self similarity, as well as conformance to the composers
plan.

* The indeterminate section adds unpredictability.

Choosing from a set of reasonable options seems to me to be the essence of
composition. Indeterminate choice is probably not the best way to do this, but until
someone discovers an algorithm for creativity it will have to do. A practical system
will have several of these composition engines, each working on some aspect of the
music and all inter-linked.

The patcher in figure 17 is an example of such an engine, designed to produce
fairly traditional chord progressions.

Peter Elsea 5/5/13 24



Fuzzy Logic and Musical Decisions

® O O chordpats
Chord request ﬂ a Beat
4
tii
/ chooseRow
i L {
+1 chooseColumn
gate 3
s p i,
Tonic Subdominentl Dominant
Lbuf049 [buf529 lbuf7 117

@
aliweE 0o 8800

Figure 17.

The possible chords are grouped in the rows of a matrix according to function. The
order of the chords in each row is suggestive of their order of probability.
Translating the interval numbers into chord symbols, the matrix is really:

| iii vi
IV i vi
V. vil Vv

The chord will be determined by both the chooseRow and chooseColumn
subpatchers. Working down the rows produces tonic, sub dominant, dominant, tonic
progressions, moving across introduces variant chords in each function. The
duplicate chords will not appear more often than the others because the rules
within the subpatchers disfavor the third column.

The chooseRow patcher is shown in figure 18.

Peter Elsea 5/5/13 25



Fuzzy Logic and Musical Decisions

® 00 ¢ chooseRow
L
t p-i.bq r measure
P T
nt0

If early in phrase, then tenic

Linfer11000000.1 meoﬁ
@ G

~
If late in phrase, then dominant
Linfer0.10000001 Fmin 001
3 63 ] &3
a
If midphrase, then subdominant
Linfer0.10001000.7 ‘ Lmin010
3 6 1§ =
q If early in measure, then tonic
e, 4k -
Linfer100 0.1 ﬂmin 100
o T ~
flush 0100 ' Lror00.30
. =
~
~
If all else fails, tonic Generally move forward laccum

(2 [ " ISR ET o RN -

Figure 18.

This patcher uses fuzzy rules to choose a row according to the progress through the
phrase. The choice is made on each beat, but the possibilities are controlled by the

input from measure number (here 0-7).
The three main rules are:
* Ifearly in phrase then tonic

* If mid-phrase then subdominant
* Iflate in phrase then dominant

Lround Ltop 1-
ST © =

Peter Elsea 5/5/13 26



Fuzzy Logic and Musical Decisions

These will assert themselves strongly at times, but in the one-quarter and three-
quarters progress points, the milder rules will produce beatwise motion:

* Generally move forward
e Ifall else fails then tonic

These interactions are determined by the shape of the rule curves. Short, tall curves
have high influence within a narrow region. Adjusting these curves (which could be
done by user input) has a strong effect on the piece.

The chooseColumn patcher is shown in figure 19. It provides the indeterminate part
of the puzzle, selecting one of two or three chords within each row.

® 0O O chooseColumn
ﬂ Chord request n Current row
4
tbbb ( J
int 0 Ifrow Othen 0.4 0.4 0.2
== 5 Lmult 4 4 2
~
Ifrow1 then 0.3 0.3 0.3
iﬁmult 333
~
Ifrow21hen04040
Beat ==2 Lmult & 4 0
~N
1 / If strong beatthen 0.100
L f Lbuf1010F mult100
flush N
First chord g: measure 1
should be - laccum
from 5010 / {000 T
column 1 e LtoTab
5 1.7
Use table to chhose
by probability jb'ﬂ
Change if too T‘ooMan
many repeats < Y ) Q

B0kl @ 68 8 8 G0

Figure 19.

Peter Elsea 5/5/13 27



Fuzzy Logic and Musical Decisions

The chooseColumn patcher uses the quantile function of the table object to make a
probability weighted choice of columns. The basic probabilities are loaded into the
table by a fuzzy mechanism, but the rules are crisp. The values chosen reflect my
preferences at the moment. They are an excellent candidate for user input.

This is a classic Markov function that could easily be expanded to more dimensions
of choice. A second order function can be achieved by using multiple predicates in
the rules, such as:

If row is 0 and last column was 0 then 0.2 0.4 0.4.

There is no reason the production of probabilities can't be fuzzy. You simply have to
insure that all probabilities don't come out zero, or there will be no output from the
table.

There are three additional rules in the chooseColumn patcher.

* On strong beats favor 1
¢ Atbeginning of phrase choose really favor 1
* Iftoo many repeats, change columns

The TooMany rule is contained in a subpatcher, and works exactly like the too many
repeats rule in the inversions patcher.

® O O TooMany

1

tiil ® OO . 12-8time

i
l___

g
"S-
"
"
H— + p————of
0

inc 1
lcount 3
x= e
linc Lo
JL—' ~ Ig.ount 4
0 gate 3 T

Imult011  Imuit101 Imult110
o o

BO s B0 CEE

Figure 20.

~

0\
o

8|

al

I

Peter Elsea 5/5/13 28



Fuzzy Logic and Musical Decisions

The entire structure is contained in the patcher shown in figure 21. This uses
elements from the Fuzzy_Harmony patcher to play continuous arpeggios. The
12 /8 time sub-patcher contains counters to produce beat and measure numbers
within an 8 measure phrase.

® OO arpeggios

o)
metro 150

tb

(-

chordpats

chordgen

inversions

addoct

H

unlist

makenot; 127 205

noteoJ

Q' [USGRER o RN -

Figure 21.

Further Study

This tutorial has barely begun to explore the musical possibilities of Fuzzy Logic
methodology. The ability of Fuzzy Logic to express traditional musical learning, and
the ease with which Fuzzy procedures can be implemented, tested and expanded
offer tremendous promise of a fruitful region of exploration. The examples offered
here are literally my first experiments in Fuzzy technique,

and represent only a few hours of development (mostly spent in tidying up the
graphics). They are crude, but offer surprisingly sophisticated performance. I can
foresee (as | hope you can by now) many problems that will benefit by the Fuzzy
approach, and look forward to future developments.

Peter Elsea 5/5/13 29



Fuzzy Logic and Musical Decisions

This tutorial is also sadly deficient in expressing the principles of Fuzzy Logic itself. I
leave that to better and more experienced writers. For beginning studies I can
recommend:

McNeill, Daniel and Freiberger, Paul; Fuzzy Logic: The Revolutionary
Computer Technology that is Changing our World. Simon and Schuster, 1993

And for practical application (including C++ examples and code on disk) Cox, Earl;
The Fuzzy Systems Handbook. AP Professional, 1994

Peter Elsea 5/5/13 30



