
Max and Graphics

Peter Elsea 9/29/07 1

Max and Graphics
Translating the LCD help file
The LCD (and jit.lcd) is the main drawing environment for max. It is based on
the underlying Macintosh graphic routines called QuickDraw.

The drawing space is made up of numbered pixels. Each pixel has two numbers,
the first is horizontal location, the second is vertical. The upper left corner is 0 0,
and the pixels across the top are 0 0, 1 0, 2 0, 3 0, 4 0, etc. The right edge is 0 0, 0 1,
0 2, and so forth. This is similar to the familiar Cartesian coordinates except that
y increases going down the screen. Instead of X and Y, I'm going to call the
points H V.

Technically speaking the point H V refers to the upper left corner of the pixel.
Thus, when you draw a line from 0 5 to 10 5, and another from 10 5 to 20 5, they
will butt against each other instead of overlapping. Some commands draw inside
of lines, so you occasionally find a 1 pixel difference on the right and bottom
edges.

All commands are in lowercase letters. Some commands are switches that are
turned on with something 1 and off with something 0.

Commands that affect the LCD itself
The size H V command will change the size of the LCD object, a bit
disconcerting, but makes it easy to figure out where the edges are.
Getsize will cause the message size H V to come out the right outlet.
Clear removes all drawing and restore the background color.
Reset removes all drawings and restores all defaults for pensize, colors, etc.

Onscreen 1 starts drawing directly to the screen instead of to a hidden buffer.
Drawing to a buffer gives a slicker effect because all of the pixels appear at once
rather than as the computer calculates them. Also, if a buffer is used, the
computer can automatically restore the contents of the LCD after it has been
hidden by another window. The only advantage of onscreen mode is it saves
memory, which may be important if you use a lot of LCDs. When you are in
onscreen mode, the right outlet will send the message "update" when the display
has been messed up. You can use that to trigger your own redrawing.

Colors
Some of the commands can take colors as arguments. There are two ways to
specify color: indexed and rgb.

An rgb color is specified by three numbers, which set the intensity of the red,
blue or green component. Possible values are for each color range from 0 to 255. 0
0 0 is black, 255 255 255 is white. 255 0 0 is a very intense red, and so on. Yellow
is 255 255 0, magenta is 255 0 255, and Cyan is 0 255 255.

Max and Graphics

Peter Elsea 9/29/07 2

Indexed colors use a single number that refers to a set of predefined colors. The
set defined is rather strange, being permutations of the values 255, 204, 153, 102,
51, and 0. That gets us up to 214. 215 to 224 are darkening shades of red, 225 to
234 are shades of green, and 235 to 244 are blues. 245 to 255 are darkening shades
of gray.

There is a color designated as the foreground color. This is used by any drawing
command that does not specify a color. It defaults to black, and will be changed
by any color drawing. Or, it can be explicitly set by the command frgb r g b.
There is a color designated as the background color with the command brgb r g
b. You won't see it until you issue a clear command. The default is white.

Getpixel H V will tell the color of the pixel at H V. The response out the right
outlet is "pixel r g b h v".

The pen
Drawing is done at the location of an invisible pen. To put the pen somewhere,
use the command moveto H V.
Click in the LCD also moves the pen.
The similar command move H V is relative to the last location. Thus if the pen is
at 15 44, move 5 5 will place it at 20 49.
Getpenloc will tell the position of the pen.

The pen starts out one pixel across. The command pensize H V changes it to a
rectangle. This affects line drawing and the various frame commands. If the
shape is not square, vertical lines will be a different width from horizontal ones.

Penmode sets the behavior of the pen in relation to what is already drawn. It
determines whether you get the foreground or background color, or something
else. Some of these functions use a third color called opcolor, which is set by the
command oprgb.

The modes are called by number, but have names as shown in the help file.
The following table describes what happens with simple shapes, with effect on
colored picts in parens.

0 Copy You get the foreground (and background of the pict)
1 Or You get the foreground of the source and destination
2 Xor Black if over white space, white if over black (in colors, you get

compliments.)
4 Bic Background color (erases things)
5 NotCopy Background color (negative of colors of source)
6 NotOr Doesn't draw at all (negative of pict, destination shows through)
7 NotXor Doesn't draw (negative of pict, negative of destination)
8 NotBic Doesn't draw (source & destination where they overlap)
32 Blend Gives a translucent effect , based on opcolor.
33 AddPin Adds the source and destination -generally gives stronger colors.

Uses OpColor as maximum
34 AddOver Adds, but with "wraparound" which can be really bizarre.

Max and Graphics

Peter Elsea 9/29/07 3

35 SubPin Gives the difference, but opcolor is the minimum. Also strange
36 transparent Will ignore pixels in the source that match the current

background. Use this when drawing PICTs if you want the
original to show through.

37 Addmax Will pass the maximum of the source and destination color,
which tends toward white.

38 SubOver Uses the difference between the colors, but if negative wraps
around.

39 AdMin Uses the lesser of the colors.

The Not and OR functions would do something if the pen is in "Pattern mode",
which means something other than a solid rectangle. Pattern modes aren't
implemented in LCD yet. Since all this math occurs on the individual color
components, it's really hard to predict what will happen with any two colors.

Text
Text is drawn starting at the pen location, and moves to the right with each letter.
If you want text to restart at the left and next line down when the right is
reached, you have to do that yourself.

Font n s changes the font to number n and size s. The number for specific fonts
varies from machine to machine so this will need some experimenting.. Most
applications list them in alphabetical order in the font menu, which isn't the
number order. The first 24 are system fonts and will be predictable. (There are
third party externals to find font numbers, I'll try to chase some down)

The command [write something \, something] will write text in the LCD. Note
that some punctuation, like comma, must be preceded by a backslash to be
written properly.
The command ascii n n n n will translate the numbers to ascii equivalent letters
and write those. There's a chart of ascii in the Max and text tutorial.

Lines
The command lineto H V draws a line from the pen location to H V.
The command line H V draws to a point H pixels right and V pixels down. H
and V can be negative numbers to go the other way.
Linesegment h1 v1 h2 v2 c draws a line from h1 v1 to h2 v2 with indexed color c.
Linesegment is really a moveto and a lineto.

Shapes
Various shapes can be drawn with a single command. The shapes are fitted into a
rectangle you define as H V upper left and H V lower right. The shapes can be
painted or framed. Paint gives a solid shape, frame gives the outline.
Paintrect
Framerect
Paintoval
Frameoval
Paintroundrect
Frameroundrect

Max and Graphics

Peter Elsea 9/29/07 4

(remember, all commands are lowercase. Bill gates won't let me start a sentence
with a lowercase.)

Framearc needs two more numbers, which are starting angle and ending angle.
These are given in degrees, where 0 is straight up.

The paint commands paint the area inside the bounding lines, and the frame
commands draw the bounding lines, so if you paint on top of a frame with the
same numbers, the right and bottom of the frame will still show. Paint
commands do not move the drawing pen.

Poly
Polygons are painted with the paintpoly and framepoly commands. The
arguments to the poly are a list of points (H,V) the poly will be drawn to. It's
analogous to a moveto followed by series of linetos. If the lines cross, the
paintpoly command will only fill areas on one side of any of its lines. It looks for
the best enclosure. Note that the poly will only be closed if the last pair of
numbers is the same as the first pair.

Regions
You can group a more complicated set of commands than the lines of poly. This
is done by the region procedure. To do this, you issue these commands:
• Recordregion
• Any number of drawing operations
• Closeregion somename
• Paintregion somename H V

You won't see any drawing until the paintregion command. The H and V of the
paint region will be added to whatever Hs and Vs were in the recorded drawing
commands. You may be surprised at what you see when you include linetos in
the region recording.

You can have as many named regions as you want to, but when you are done
with one, you should call deleteregion to free up the memory. Clearregions
deletes all regions, as does reset.

Clipping Regions
A clipping region is a area that limits drawing, sort of a cookie cutter effect.
The following define clipping regions.
Cliprect
Clipoval
Cliproundrect
Clippoly

Cliparc is apparently planned for a later version.

Only one clipping region is in effect at a time. You can have a complex clipping
region by making a region, and using the command:
Cliprgn somename H V

Max and Graphics

Peter Elsea 9/29/07 5

If a clipping region is in effect, the clear command only clears the clipping
region. Clipping regions are not removed by the reset command, but I suspect
this is a bug. The command noclip gets rid of the clipping region.

Scrollrect is similar to a region command. It copies what ever is in the specified
rectangle, erases the rectangle, then draws the copy into a rectangle that is
moved by the specified distance. That's all done by
Scrollrect H V H1 V1 mH mV

It's most useful for moving the entire LCD contents.

Sprites
So far all drawing has been permanent. If you draw something, change the H
and V values and draw it again, you get two copies. To get rid of something, you
have to draw it with the background color, and then redraw anything you
wanted to keep. Sprites allow you to define drawings that will move around the
screen.

To use sprites, you need to do enablesprites 1. This creates more off screen space
for drawing. Then:
• recordsprite
• (a bunch of drawing commands)
• closesprite aname

will create the sprite. Drawsprite H V will draw it. Drawsprite H1 V1 will move
the sprite to a different position without affecting any background. To make a
sprite go away temporarily, use hidesprite. Free up its memory with deletesprite
when you are done with it.

Clear and reset do not affect sprites.

If you use counters to calculate H and V, sprites will glide nicely around on the
screen. (Jit.lcd does not have sprites. You can composite images in other ways.)

picts
Pict files are a Macintosh graphics files format. Most graphics programs such as
photoshop can create them. You can use Picts in an LCD. The command

Readpict aname filename

will load the pict into the system. (It can apparently also read jpeg files.) The
name you give it is just an identifier for LCD, it has nothing to do with what's on
the drive.

Then drawpict will put it in the LCD. The arguments to drawpict can make some
interesting changes:

Max and Graphics

Peter Elsea 9/29/07 6

Drawpict aname H V will place the upper left corner of the
pict at H and V. Many picts include
white space around the edges, so you
may have to allow for that. (Try
transparent mode)

Drawpict aname H V H1 V1 will squeeze (or expand) the picture
into the rectangle defined.

Drawpict aname 0 0 0 0 sH sV sH1 sV1
will draw only part of the picture. sH
etc determine which part of the picture.

Drawpict aname H V H1 V1 sH sV sH1 sV1
will draw part of the picture in the
rectangle with appropriate scaling.

Deletepict aname removes the pict file from memory but
doesn't erase it from the LCD.

Clearpicts removes all picts from memory.

You can put a pict into a sprite. You can also tile picts with the command:

tilepict H V H1 V1 sH sV sH1 sV1

Tiling repeats the image as many times as necessary to fill the specified rectangle
or the LCD. (You can shape this with a clipregion.) The sH etc. arguments
determine the size of the tiles and where they come from in the image.

Once you have built up an interesting image in your LCD, you can immortalize it
with the writepict command.

Mouse Actions
When the patcher is locked, you can draw directly into the LCD with the mouse.
The mouse location is sent out the left outlet while drawing is going on. If the
mouse button is clicked, a 1 for mouse down or a 0 for mouse up are sent out the
third outlet. The command local 0 will turn mouse drawing off, but position and
button messages are still sent.

If the command idle 1 has been received, the location of the mouse will be sent
out the second outlet when the mouse is over the LCD but not drawing.

With these mouse features, the LCD makes a nice performance interface. You can
load a pict in, and then respond when the user clicks over an interesting part of
the pict.

Max and Graphics

Peter Elsea 9/29/07 7

 A Drawing Example
Drawing on the screen is a matter of figuring out where to put the available
shapes. Some lovely patterns can be created by placing dots at mathematically
determined locations. Here's an example.

The number box at the top sets the radius of a circle. The paintoval command
requires a box to inscribe the circle in, which is provided by the pack. This is
modified by the lmult object, which with two arguments only affects first two list
members. The list at this point is [-34 -34 34 34 255 0 0]. This corresponds to left
edge, top, right edge, bottom, with three numbers to provide the color in RGB
format.

This list is fed to the Ladd at the bottom which centers everything in the LCD. I
find this approach is usually much simpler than trying to do all the math in the
positive quadrant, and changing the size of the LCD requires only one change in
the patch.

I also want some circles half this size, which are created by lmult 0.5. Lmult with
one argument will process everything in the list. (This will affect the color, but
it's about to be changed anyway.) The Ladds make three of these and move them
to different places. Messages box tokens are a good way to copy specified

Max and Graphics

Peter Elsea 9/29/07 8

members of a list. In this case they are chosen to move the center of the small
circles to the edges of the large one.

Lmask sets the color of the smaller circles.

Note that the two sets of circles are separated by a trig (t) object. This kind of
drawing is very sensitive to the order of operations. Here's what I get if the two
trig outlets are switched:

I use Lobjects extensively for sizing and positioning graphics. Individual objects
could do the job, but I find it easier to keep track of what is going on when the
complete description of a rectangle is in a single list. When this format is used,
the following operations are easy to apply:

Ladd 5 0 5 0 0 Move object right 5 pixels
Ladd 0 5 0 5 0 Move object down 5 pixels
Ladd 0 0 5 0 0 Widen object by 5 pixels
Ladd 0 0 0 5 0 Increase height by 5 pixels
Lmult 1 1 5 5 1 Make object 5 times size (only works if left top is 0 0,

so this will usually be done first. You can also do this
if you are using negative coordingates for left and
top.)

Lmask * * * * 5 forces index color to be 5. (See the Lmask help
window to see how to change the mask.)

Max and Graphics

Peter Elsea 9/29/07 9

Rorschach
Here's a more elaborate drawing.

This patcher uses drunk objects to generate a random scribble made of tiny
rectangles. A new horizontal, vertical and color value are created on each metro
tick. Note that the rectangle to be drawn has no dimensions at the start. This is
added later. The list that comes out of the pack object is H V H V color.

The reflections subpatcher gives the characteristic symmetry of inkblots that are
made by folding paper. This is what's inside:

Max and Graphics

Peter Elsea 9/29/07 10

This creates three new lists and thus four rectangles will be drawn. By just
changing the sign of the H, V or both values, the shapes will be reflected into
four quadrants.

The final addition is performed to move the shape to the center, and at the same
time give some dimension to the rectangle. Note that the rectangles are drawn to
the right and below the actual coordinate.

A word about the colors subpatcher. This uses one of my favorite tricks to
generate random RGB colors. The swatch object recognizes the hsl message,
which specifies a color as hue, saturation and level. The arguments of the hsl
message let me change colors randomly while guaranteeing they will be nice and
bright.

Max and Graphics

Peter Elsea 9/29/07 11

Polar Coordinates
Here's something even more complex:

This is going to draw some curves. It works by calculating an angle and radius
for each point. This is how polar coordinates work in the Macintosh graphic
world:

H
V

R

0 or 2π

π/2

π

3π/2

-1 -1 1 -1

-1 1

1 1

angle

Max and Graphics

Peter Elsea 9/29/07 12

The point we are interested is found at the end of the line R. The radius R and the
angle tell us where the point is. Of course, in order to draw the point, it has to be
expressed in terms of H and V. H is equal to R* cos (angle) and V is R*sin(angle),
but we can avoid the math with the poltocar object.

There are two things to be aware of when using polar coordinates. First off, the
angle is expressed in radians, and a full circle is 6.283185307 radians. To get
accurate placement out at the corners of large drawings, we should keep about 4
significant figures, so 6.283 works. We can generate angles by counting to 6283
and dividing by 100.0, or by using Lcount, which will do float counting.

The second thing is that a full circle will include negative H and V values, so we
will again use the offset origin trick.

The patcher includes all of those features but the angle generated is from -π/6 to
π/6 (0.5236 radians, equivalent to 30°.) Hidden away in the subpatcher you will
find these operations:

This forms 5 reflections for each point. The reflections are around axes set at 60°
angles, which is the effect you get from most kaleidoscopes. The poltocar object
converts these to the kind of list we are used to using, and rectangles one pixel
wide are painted in the LCD. Here's the result:

Max and Graphics

Peter Elsea 9/29/07 13

The actual curves you get depends on the settings of the ratio counters. More
complex patterns arise from changing these ratios at carefully chosen moments.

Max and Graphics

Peter Elsea 9/29/07 14

A real time display
The LCD object is quick enough that you can use it for metering and other real
time tasks. Here's a simple piano roll patcher:

The key is the scrollrect command that moves everything to the left on each tick
of the metro. Lreg maintains a list of active midi notes. (The same thing can be
done with bag.) These are used to paint squares in the manner described before.

