
Advanced Math in Jitter

Peter Elsea 3/7/10 1

Advanced Math in Jitter

Jit.expr
Jit.expr is one of the more enigmatic Max objects. Like expr, and vexpr it exists to allow
code level manipulation of data. Unlike expr, it works on entire matrices in one go.

The key argument to jit.expr is the @expr attribute, which is the math expression to apply
to each cell. The expression may be contained in double quote marks. This is not
necessary if there are no spaces in the expression, but I find spaces make math easier to
read1. Figure 1 shows the archetypical jit.expr test patch. A small matrix is constructed
with the same value in each cell. This is fed to specimen jit.expr expressions and the
results read from a jit.cellblock.

Figure 1.

You will notice from figure 1 that jit.expr has a unique syntax. In place of the $i1 and
$f1 tokens to denote input data, jit.expr uses the variable expression in[*] where the
bracket contains the inlet number. You will also notice that the leftmost inlet is numbered
0. The object does not automatically provide enough inlets for the expression-- if more
than two are needed, the @inputs attribute will produce them. There can be at least 64
inlets, although I can't imagine any math expression complex enough to use that many.

When jit.expr receives a matrix, it applies the expression to each cell in the input matrix
and outputs a matrix of the same size. If you want to define a constant size for the output

1 If you use quotes, but don't have any spaces, the quotes will vanish when the object is
completed.

Advanced Math in Jitter

Peter Elsea 3/7/10 2

matrix, use the @dim attributes. When that is done, an incoming matrix is interpolated
across the defined dimensions as with any other matrix. (Srcdim and destdim functions
are not available, however.)
Jit.expr does all math in float format. If you apply chars to the input, they are normalized
to the range 0 to 1.0 Since the char data type is unsigned, make sure operations do not
involve negative values.

If there is only one expression, it is applied to all planes of the input matrix. You may
also supply one expression per plane if you like. The in[*].p[*] variable can be used to
access a value by input and plane. You can also specify a jit.matrix by name as input, and
add .p[*] to specify a plane in that matrix.

Many operations require the coordinates of the cell. These are available in three forms:
• cell[†] gives an integer coordinate, where † denotes the dimension2.
• norm[†] gives a coordinate normalized to the range 0.0 to 1.0.
• snorm[†] gives a coordinate normalized to the range -1.0 to 1.0.
• dim[†] provides the size of the requested dimension.

The fundamental operators available to jit.expr are the same as those in jit.op, with the
exception of char only operations, and variants of pass3. The functions require one or two
arguments in parentheses. When there is more than one argument, they must be separated
by a comma, which is written \, unless the @expr is in quotes.

Function Operation Example
* multiplication; "in[0] * 3"
/ division; "in[0] / 3"
+ addition; "in[0] + 3"
- subtraction; "in[0] - 3"
% modulo; "in[0] % 3"
abs absolute value; "abs(in[0])"
min minimum; "min(in[0], 3)"
max maximum; "max(in[0], 3)"
avg average; "avg(in[0].p[0], in[0].p[1])"
absdiff absolute value of difference; "absdiff(in[0].p[0], in[0].p[1])"
fold mirrored modulo; "fold(in[0], 3)"
wrap positive modulo; "wrap(in[0], 3)"
sin sine; "sin(norm[0]* TWOPI)"
cos cosine; "cos(norm[0]* TWOPI)"
tan tangent; "tan(norm[0]* TWOPI)"
asin arcsine; "asin(norm[0])"
acos arccosine; "acos(norm[0])"
atan arctangent; "atan(norm[0])"

2 Starting with 0, of course. This is in the order specified in the original matrix.
3 Actually, you can write "pass(in[0])" but the point of that is unclear.

Advanced Math in Jitter

Peter Elsea 3/7/10 3

atan2 Arctangent of X and Y; "atan2(snorm[0], snorm[1])"
sinh hyperbolic sine; "sinh(norm[0]* TWOPI)"
cosh hyperbolic cosine; "cosh(norm[0]* TWOPI)"
tanh hyperbolic tangent; "tanh(norm[0]* TWOPI)"
asinh hyperbolic arcsine; "asinh(norm[0])"
acosh hyperbolic arccosine; "cosh(norm[0])"
atanh hyperbolic arctangent; "atanh(norm[0])"
exp e to the x; "exp(in[0])"
exp2 2 to the x; "exp2(in[0])"
ln log base e; "ln(in[0])"
log2 log base 2; "log2(in[0])"
log10 log base 10; "log10(in[0])"
hypot hypotenuse(binary); "hypot(snorm[0], snorm[1])"
pow x to the y(binary); "pow(in[0], 3)"
sqrt square root; "sqrt(in[0])"
ceil integer ceiling; "ceil(in[0])"
floor integer floor; "floor(in[0])"
round round to nearest integer; "round(in[0])"
trunc truncate to integer "trunc(in[0])"

Logicals consider any non-0 true4

&& logical and; "in[0] && in[0].p[1]"
|| logical or; "in[0] || in[0].p[1]"
! logical not(unary); "! in[0] "
> greater than; "in[0] > in[0].p[1]"
< less than; "in[0] < in[0].p[1]"
>= greater than or equal to; "in[0] >= in[0].p[1]"
<= less than or equal to; "in[0] <= in[0].p[1]"
== equal; "in[0] == in[0].p[1]"
!= not equal "in[0] != in[0].p[1]"

Many of the most common numbers can be called up by name. These are called
constants, and using them is much more efficient than, for instance, sqrt(2).

Constant Value Notes
 PI 3.141593
 TWOPI 6.283185
 HALFPI 1.570796
 INVPI 0.31831
 DEGTORAD 0.017453 Multiply by angle in degrees to get radians
 RADTODEG 57.29578 Vice versa
 E 2.718282
 LN2 0.693147 Natural logarithm of 2

4 Logical operations evealuate the truth of an expression and return 0 or 1, but there is no
equivalent of an if statement.

Advanced Math in Jitter

Peter Elsea 3/7/10 4

 LN10 2.302585
 LOG10E 0.434294 Logarithm base 10 of e
 LOG2E 1.442695 Logarithm base 2 of e
 SQRT2 1.414214
 SQRT1_2 0.707107 sqrt(0.5)

The advantage of jit.expr over jit.op is the possibility of complex operations in one
object. There is some penalty in moving matrices around, so combining 3 jit.ops into 1
jit.expr will improve the frame rate. The advantage of jit.op over jit.expr is found in the
various conditional pass operations.

Jit.gencoord
The @expr "norm[0]" "norm[1]" will fill a matrix with a set of coordinates that are useful
to many jitter objects. For example, a jit.gl.nurbs surface is typically generated by
specifying a regular gird in the Y and Z coordinates and applying some interesting
information to the X plane. The need for coordinate generation is common enough that
there is a dedicated object, jit.gencoord. This object produces a set of coordinates in X
and Y with extra control offered by scale and offset attributes. Figure 2 shows a typical
use.

Figure 2. Jit.gencoord and jit.gl.nurbs

Note that the coordinates usually only need be generated once. Then they can be
efficiently passed on for further calculations.

Advanced Math in Jitter

Peter Elsea 3/7/10 5

Jit.bfg
Jit.bfg is a basis function generator. Basis functions are formulas that produce curves and
surfaces that are mathematically interesting. For instance, the sinc function is expressed
in the formula:

When jit.bfg is asked to produce this, it takes the equivalent of norm[†] as the x value
and outputs a matrix of the specified size. If a matrix is applied to jit.bfg, the matrix
dimensions are used, but values in the matrix are ignored. The output of the sinc function
is graphed in figure 3, first as a matrix visualization and on the right as interpreted by
jit.graph.

Figure 3.

Figure 3 has been manipulated by scale and offset values sent to jit.bfg5. These affect the
coordinate values used for x. An offset of -12 and a scale of 15 would produce the input
term (15*norm[†]-12). There are further manipulations possible by the origin (which is
added to the coordinates before scaling), and rotation (which introduces a cos(norm[†])
operation). These are independently set for each dimension, which can produce a rich set
of patterns:

Figure 4.

5 The peak of the sinc curve occurs at x = 0.

Advanced Math in Jitter

Peter Elsea 3/7/10 6

What are these good for? They can process images by multiplication, they can create
NURBS based shapes, they can produce unique repos patterns-- the possibilities are
endless.

Figure 5.

Figures 6, 7 and 8 show how some of this is done.

Figure 6.
Jit.bfg has a tutorial (#50) that demonstrates all of the functions6, and the help file
explores the fractal functions is some depth.

6 At the time this is written, some functions are not working-- if a particular basis
produces a black screen in the help file, just skip it for now and try another.

Advanced Math in Jitter

Peter Elsea 3/7/10 7

Figure 7.

Figure 8.

