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Meet j i t .repos 
Repos stands for reposition, an efficient way to mangle images. We can use it to 
turn pictures inside out, or build fun house mirrors, strange lenses, and 
kaleidoscopes. The principle behind jit.repos is simple. It holds a control matrix 
with 2 planes and the dimensions of the image to process. The values in the 
control matrix are the source for each pixel in the final output. For example, if the 
control matrix contains [0 0] at position [160 120], pixel 160 120 in the output will 
contain the colors found at [0 0] of the input. This can produce an endless variety 
of strange images. 
 
The secret to using jit.repos is in making control matrices. This can be a tedious 
process, so it is best to build them ahead of time and save them to disk. Once 
they are made up, it is easy to use jit.xfade and jit.matrixset to move them around 
and animate the process. 
 
The first control matrix to make does nothing at all. Each cell contains its own 
cell position, so jit.repos will just pass the image through. (I’ll call it the pass.jxf 
matrix) The method used to derive it is unnecessarily complex, but we only have 
to do it once, and this patch will become our control matrix factory. 
 
We’ll use a simple test patch to check the results: 
 

 
Figure 1. 
Even with a movie loaded in and the metro running, there is no output until a 
control matrix is applied to the right inlet. The makecontrol subpatcher has the 
basic construction driver. 
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Figure 2  makecontrol 
This simply stuffs a setcell command with the same numbers for address and 
value. The result in this case is a perfectly normal image. (It's not useless, though. 
With this control matrix, the offset_x and offset_y attributes of repose will slide 
the image around.) 
 

 
Figure 3. 
Save the matrix with the write command. Now a simple process creates a 
different control matrix: 

                
Figure 4. The math: the result. 
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Plane 0 of the control matrix now has the numbers reversed across each row. The 
result is a left to right swap. The same process on Y will produce controls for the 
results in figure 5. 
 

  
Figure 5 

Partit ioning 
Figure 6 illustrates another simple process. This is all available in jit.split, but it’s 
a bit more efficient here, and the process of making the controls is a stepping 
stone to some unique things. If we use the remainder 80 across the top and 
remainder 60 down the side, the upper corner of the image is repeated in a 4 x 4 
grid. We could focus on other parts of the image by adding an offset after the 
remainder. This would point to the upper left pixel of the section we want. 
 

   
Figure 6 
 
In figure 7, the entire image is squeezed into a grid at a smaller scale. The small 
images are made by stepping through the whole image, taking every 4th pixel. 
 

  
Figure 7. 
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Figure 8 shows how to modify the process for different areas of the image. A gate 
chooses one of two possible processes depending on the value of X. The int box is 
necessary to insure that the Y value is correctly processed according to the 
current conditions. In the simple patches, Y is only processed once per each 320 X 
values. 
 

  
 
Figure 8 
 
Figure 9 goes a bit further. The split point is taken from Y, so it moves diagonally 
across the image. Y is scaled by 1.33 to conform to the 4:3 aspect of the movie. 
You should experiment with changing the sense of the comparison and other 
ratios for the y scaling. 
 

  
 
Figure 9. 
 
In figure 10, a counter gives an even more complex seam. 
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Figure 10. 
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Rotations 
To do rotations, we use our old friend cartopol, as in figure 11. 

  
Figure 11. 
 
First, translate the coordinates to the center (or other anchor of your choice) by 
subtracting the center position from the incoming X and Y. Then cartopol 
converts the Cartesian coordinates to polar. Add an angle and convert back with 
poltocar. Finally, move the origin back to the corner. Notice that cartopol 
considers a positive angle to be a counter-clockwise rotation. This example uses 
the control inlet, and converts the incoming value (in degrees) to radians. 
 
The rotation need not be constant. In figure 12, it is dependent on Y as well as a 
control angle. 
 

   
 
Figure 12. 
 
Some other rotation ratios are shown in figure 13 
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Figure 13A  Y* 3 degrees 13B Y *  6 degrees 
 

  
13C    X * 1.125 degrees 13D  (X+Y) * 0.28 degrees 
 
Making the rotation dependent on the radius after the cartopol will generate 
spirals. 
 

  
Figure 14. 
 
The angle controls the number of times around. Larger values give tighter 
spirals. 
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Figure 15A  control 3 degrees 15B  control 6 degrees 

Trigonometric transformations 
Simple trig functions will give waves in the image, not unlike amplitude 
modulation of an audio wave. 
 

  
Figure 16. 
 
In figure 16, the sine of the X value is used to modulate the Y. The multiplier is 
based on pi/ 320. Other multiplier give similar results. Figure 17A shows a high 
frequency ripple, while 17B shows the effect of modulating both X and Y. In 17C 
the amplitude of the modulation is increased to run from -100 to 100. 17D 
suggests the effects of tangent functions. 
 

  
Figure 17A     X * 0.5236 17B  sin(X * 0.05236) sin(Y*0.05236) 
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17C  5 times 15B 17D    Y = 40 * tan(X) 
 
The distortion can be bilateral if you use the Y value to scale the sin function. 
 

  
Figure 18 
 
Or if you use X. 
 

  
Figure 19 
The expr object in figure 19 produces a triangle function, a useful trick for getting 
smooth transitions in the middle of a control matrix. 
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Reflections 
We can fake a simple reflection by combining rotation and partitioning: 
 

  
figure 20.     a 60 degree reflection 
 

Repos and the Kaleidoscope 

 
www.arborsci.com 
 
Kaleidoscopes are some of my favorite toys. The traditional design has a pair of 
mirrors mounted at an angle in a tube so that as you look through the tube you 
see a slice of something at the other end, plus its reflection as well as reflections 
of the reflections all  the way around a circle. To do this with repos we build a 
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control matrix that divides into segments, and for each segment get either the 
image rotated or the reflection rotated. 
 

 
Figure 21 
Figure 21 will do the job. At the top it converts the XY coordinates to polar 
coordinates,  just like the rotation subpatches. We can visualize this as scanning 
all of the pixels in a circular fashion. Next the angle is offset so it runs 0 to 6.28 
instead of –3.14 to 3.14. This makes it possible to use a simple modulus operation 
to determine what each segment needs. In this example I convert the radians of 
the angle outlet to degrees, primarily because it makes the math easier to follow. 
(It still works if you leave angles in radians.) The next step is a little tricky. The 
angle this cell should look at (in polar coordinates) is the remainder that is 
obtained when the mirror angle is divided into the original angle of the cell. This 
is provided by the % operation. Half the segments need to be a reflected version, 
which is easily produced by subtracting the remainder from the mirror angle. In 
effect this makes the scan go backwards. The choice is made by comparing the 
remainder found by dividing the lookat angle by both the mirror angel and twice 
the mirror angle. If they are the same, we want the normal image. If they are 
different, the reflected image is appropriate. 
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After this is done the angle is converted back to radians  from –pi to pi, and the 
polar coordinates back to Cartesian. Here are some examples with various mirror 
angles. 
 

  
original 180 degrees 
 

  
90 degrees 60 degrees 
 

  
45 degrees 36 degrees 
Figure 22. 

  
30 degrees 22.5 degrees 
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18 degrees 15 degrees 
 

  
12.25 degrees 7.5 degrees 
 

  
6.125 degrees 3 degrees 
Figure 23. 

Using relative mode 
Jit.repos has two modes, which determine the precise effect of the control matrix. 
Heretofore we have used absolute mode (0), where the source of an output cell is 
the location specified in the control matrix. In relative mode (1) the source of an 
output cell is the address of the cell plus the contents of the same cell in the 
control matrix. If you are in relative mode, and the control matrix is filled with 
0s, the input is passed straight through. Relative mode can be responsive in real 
time, as follows. 
 
First I will create a control matrix that contains some simple trig functions. The 
make control patcher has to be modified to handle floats as shown in figure 24. 
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Figure 24. 
Now the control matrix is set up like this: 
 

 
Figure 25 

The matrix applied to jit.repos must be char or long. Since chars cannot take 
negative values, long is used the most. In figure 25, the float trig functions from 
the control matrix are run through jit.op for scaling and converted to longs. The 
multiplier in jit.op will determine how much effect is applied, and since this is 
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just a multiply on a pre-computed matrix, it will respond instantly. Here are 
some examples. 

 
 

  
Amount 2. Amount 4. 
 

  
Amount 8. Amount 16. 
 

  
Amount 32 Amount 128. 
 
 

Dynamic Repos 

Using quicktime 
Relative repos control matrices can be stored as a quicktime movie, enabling 
some nifty animations. This example creates an expanding ripple. It starts with a 
function generator: 
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Figure 26. 
This part of the patch is dedicated to filling the matrix with the function 
 

F[x] = (1-kx)sin(x) 
 
with x ranging from 0 to 8π. That will  be a sine wave that fades over 4 cycles, as 
shown. 
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Figure 27. 
Figure 27 is the mechanism for applying the function. This will plug into a 
modified makecontrol patch (figure 29.) The X and Y coordinates are centered, 
then converted to polar form. The angle is unmodified, but the radius has a value 
from the function added. The radius is only changed a bit, but that will 
eventually be magnified. The value obtained from the function is offset by a 
control that varies with each frame. Note that the offset is reversed by 
subtracting the radius from the control. The control value will range from 0 to 
320, so the offset radius will sweep from -160 to 0 at the start and from 160 to 320 
at the end. In conjunction with the split object, this will present three possibilities 
for each radius operation. At the start, all values will be negative, and produce 
no change to the image. As the offset expands, pixels from the center to the offset 
will be modified by the function. Note the function is highest in amplitude at the 
beginning. Eventually, the offset becomes larger than the image and the center 
area is unaffected. The control matrices are visualized in figure 28. Gray 
represents no change. 

   
Figure 28  
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Figure 29. 
 
 
The patch of figure 29 generates the series of matrices. For each frame, a set of 
uzis produce coordinates for figure 27 (included in the ripple sub-patch) and the 
results are stuffed into a matrix of char that can be recorded by jit.qt.record. The 
float values produced by the mechanism of figure 27 are interpolated  to chars in 
the range 0 255. These values need some massage to control the repos as shown 
in figure 30. These operations reverse the steps. The char matrix output by 
jit.qt.movie is converted to float32, 0.5  is subtracted, then the effect is multiplied 
as desired. 
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Figure 30. 
 
 
Similar animations can be created by capturing control frames in a matrix set, but 
the movie approach is more flexible. 
 

Using Matrixsets 
There are some limits to the use of QuickTime movies to store repos control 
matrices. Since the QuickTime format converts all data to 24 bit color, cell values 
greater than 255 cannot be stored. This pretty much limits QuickTime control to 
relative mode. For more grandiose animated transformations,  matrixsets are the 
best choice. These can be quite large, so memory could be an issue. The 
mechanism for recording repos action into a matrix set is very much like figure 
29. 
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Figure 31. 
 
Playback is simple too. The image shown in figure 32 is derived from Julia sets. 
To find out more, read on. 
 

   
 
 
 

   
 
Figure 32. Several stages of repose controlled by matrixset.



Repos 

Peter Elsea    1/25/12 21 

Repos and the Julia set 
The Julia set is an interesting construct. It is a grouping found by iterating this 
formula 
 

Zi+1 = Z2 + C 
Equation 1. 
 
Where Z and C are complex numbers. An equivalent formula pair that’s 
appropriate to our needs is: 

 
Xn+1 = X2 – Y2 + A 

 
Yn+1 = 2*X*Y + B 

Equation 2. 
 
These map the real part of Z to X and the imaginary part to Y, with A the real 
part of C and B the imaginary part of C. The typical application for these is to try 
hundreds of iterations for various values of A and B. If the X and Y values stay 
on the screen, the value pair (or C ) is a member of the set. This is the famous 
Mandelbrot set. (figure 33.)   

 
Figure 33. The Mandelbrot set 
 
Most mathematicians are interested in a simple case for any starting pair-- does it 
stay on the page as the formula is iterated, or do the values increase to infinity.  
 
A Julia set is the set of Z  (X,Y pairs) that stay on the screen for a given C. These 
sets may be spots all over the screen, or may form uniquely twisted shapes. 
Figure 34 shows one example for C = -0.38. The screen area is -1 to 1 in the Y 
direction. The black areas of the image are values that have jumped out of range 
(they will never return) and the blue areas are a value that are approaching 0,0. 
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  A = -0.38  B=0. 1 iteration 2 iterations 
 

  
3 iterations 5 iterations 
Figure 34. 
 
The colored portion of the image is a Julia set. Further iterations make the red 
and green regions thinner and the edge more crinkly. 
 
Even if you don’t understand the math concepts here, note that these formulas 
take X and Y in and give a new X and Y out. That’s grist for jit.repos. For each 
cell in the control matrix, transform its own coordinates with equation 2. Even if 
we just apply a few iterations, we see transformations that are uniquely strange. 
 
What generally happens is that one iteration gives a nearly recognizable twisted 
image, and additional iterations begin to approach the shape of the set. Different 
A and B values give very different shapes: 
 
 

  
A = 0.075  B = 0.   1 iteration A = 0.075   B = 0.43  1 iteration 
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A = 0.075   B = -0.43 2 iterations A = - 0.75  B = 0  6 iterations 
 

  
A = 0     B = 1   6 iterations A = -1.75   B = 0  4 iterations 
Figure 35. 
 
 
There are too many shapes and variations to give examples of every possibility. 
One nice feature is that slight changes of A or B (on the order of 0.01) give slight 
variation s in the shape. It’s possible to set up a slow evolution  of the shape that 
way. Since these are repositionings, different source materials will show up in 
strikingly different ways. The source here is the wheel movie, which has a black 
outer edge. If a frame is colored at the  edge some interesting transitions show 
up. Here’s the dishes movie with boundmode = 3 
 

  
A = -1.75 B = 0  4 iterations A= -0.69   B = 0.44  6 iterations 
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A = -0.69 B = 0.44  2 iterations A = -0.69 B = 0.44  1 iteration 
Figure 36 
Most of the usable A and B values are found within the Mandelbrot set, although 
values off the set will give interesting forms with only one or two iterations. 

 
 A in  the set ranges from –2 to 0.35 and B from – 1 to 1. The really twisted images 
come from the edge zone. 
 
Here’s how the Julia set generator works:  

 
Figure 37. 
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Figure 38. Contents of iterateme 
 
The uzi in figure 37 determines the number of iterations. The values from A and 
B set the constants in the iteration. The first X and Y values for th computation 
are taken from the coordinates on the screen. The X and Y results of each 
iteration are then reapplied to the formula as many times as desired. 


