
Repos

Peter Elsea 1/25/12 1

Meet j i t .repos
Repos stands for reposition, an efficient way to mangle images. We can use it to
turn pictures inside out, or build fun house mirrors, strange lenses, and
kaleidoscopes. The principle behind jit.repos is simple. It holds a control matrix
with 2 planes and the dimensions of the image to process. The values in the
control matrix are the source for each pixel in the final output. For example, if the
control matrix contains [0 0] at position [160 120], pixel 160 120 in the output will
contain the colors found at [0 0] of the input. This can produce an endless variety
of strange images.

The secret to using jit.repos is in making control matrices. This can be a tedious
process, so it is best to build them ahead of time and save them to disk. Once
they are made up, it is easy to use jit.xfade and jit.matrixset to move them around
and animate the process.

The first control matrix to make does nothing at all. Each cell contains its own
cell position, so jit.repos will just pass the image through. (I’ll call it the pass.jxf
matrix) The method used to derive it is unnecessarily complex, but we only have
to do it once, and this patch will become our control matrix factory.

We’ll use a simple test patch to check the results:

Figure 1.
Even with a movie loaded in and the metro running, there is no output until a
control matrix is applied to the right inlet. The makecontrol subpatcher has the
basic construction driver.

Repos

Peter Elsea 1/25/12 2

Figure 2 makecontrol
This simply stuffs a setcell command with the same numbers for address and
value. The result in this case is a perfectly normal image. (It's not useless, though.
With this control matrix, the offset_x and offset_y attributes of repose will slide
the image around.)

Figure 3.
Save the matrix with the write command. Now a simple process creates a
different control matrix:

Figure 4. The math: the result.

Repos

Peter Elsea 1/25/12 3

Plane 0 of the control matrix now has the numbers reversed across each row. The
result is a left to right swap. The same process on Y will produce controls for the
results in figure 5.

Figure 5

Partit ioning
Figure 6 illustrates another simple process. This is all available in jit.split, but it’s
a bit more efficient here, and the process of making the controls is a stepping
stone to some unique things. If we use the remainder 80 across the top and
remainder 60 down the side, the upper corner of the image is repeated in a 4 x 4
grid. We could focus on other parts of the image by adding an offset after the
remainder. This would point to the upper left pixel of the section we want.

Figure 6

In figure 7, the entire image is squeezed into a grid at a smaller scale. The small
images are made by stepping through the whole image, taking every 4th pixel.

Figure 7.

Repos

Peter Elsea 1/25/12 4

Figure 8 shows how to modify the process for different areas of the image. A gate
chooses one of two possible processes depending on the value of X. The int box is
necessary to insure that the Y value is correctly processed according to the
current conditions. In the simple patches, Y is only processed once per each 320 X
values.

Figure 8

Figure 9 goes a bit further. The split point is taken from Y, so it moves diagonally
across the image. Y is scaled by 1.33 to conform to the 4:3 aspect of the movie.
You should experiment with changing the sense of the comparison and other
ratios for the y scaling.

Figure 9.

In figure 10, a counter gives an even more complex seam.

Repos

Peter Elsea 1/25/12 5

Figure 10.

Repos

Peter Elsea 1/25/12 6

Rotations
To do rotations, we use our old friend cartopol, as in figure 11.

Figure 11.

First, translate the coordinates to the center (or other anchor of your choice) by
subtracting the center position from the incoming X and Y. Then cartopol
converts the Cartesian coordinates to polar. Add an angle and convert back with
poltocar. Finally, move the origin back to the corner. Notice that cartopol
considers a positive angle to be a counter-clockwise rotation. This example uses
the control inlet, and converts the incoming value (in degrees) to radians.

The rotation need not be constant. In figure 12, it is dependent on Y as well as a
control angle.

Figure 12.

Some other rotation ratios are shown in figure 13

Repos

Peter Elsea 1/25/12 7

Figure 13A Y* 3 degrees 13B Y * 6 degrees

13C X * 1.125 degrees 13D (X+Y) * 0.28 degrees

Making the rotation dependent on the radius after the cartopol will generate
spirals.

Figure 14.

The angle controls the number of times around. Larger values give tighter
spirals.

Repos

Peter Elsea 1/25/12 8

Figure 15A control 3 degrees 15B control 6 degrees

Trigonometric transformations
Simple trig functions will give waves in the image, not unlike amplitude
modulation of an audio wave.

Figure 16.

In figure 16, the sine of the X value is used to modulate the Y. The multiplier is
based on pi/ 320. Other multiplier give similar results. Figure 17A shows a high
frequency ripple, while 17B shows the effect of modulating both X and Y. In 17C
the amplitude of the modulation is increased to run from -100 to 100. 17D
suggests the effects of tangent functions.

Figure 17A X * 0.5236 17B sin(X * 0.05236) sin(Y*0.05236)

Repos

Peter Elsea 1/25/12 9

17C 5 times 15B 17D Y = 40 * tan(X)

The distortion can be bilateral if you use the Y value to scale the sin function.

Figure 18

Or if you use X.

Figure 19
The expr object in figure 19 produces a triangle function, a useful trick for getting
smooth transitions in the middle of a control matrix.

Repos

Peter Elsea 1/25/12 10

Reflections
We can fake a simple reflection by combining rotation and partitioning:

figure 20. a 60 degree reflection

Repos and the Kaleidoscope

www.arborsci.com

Kaleidoscopes are some of my favorite toys. The traditional design has a pair of
mirrors mounted at an angle in a tube so that as you look through the tube you
see a slice of something at the other end, plus its reflection as well as reflections
of the reflections all the way around a circle. To do this with repos we build a

Repos

Peter Elsea 1/25/12 11

control matrix that divides into segments, and for each segment get either the
image rotated or the reflection rotated.

Figure 21
Figure 21 will do the job. At the top it converts the XY coordinates to polar
coordinates, just like the rotation subpatches. We can visualize this as scanning
all of the pixels in a circular fashion. Next the angle is offset so it runs 0 to 6.28
instead of –3.14 to 3.14. This makes it possible to use a simple modulus operation
to determine what each segment needs. In this example I convert the radians of
the angle outlet to degrees, primarily because it makes the math easier to follow.
(It still works if you leave angles in radians.) The next step is a little tricky. The
angle this cell should look at (in polar coordinates) is the remainder that is
obtained when the mirror angle is divided into the original angle of the cell. This
is provided by the % operation. Half the segments need to be a reflected version,
which is easily produced by subtracting the remainder from the mirror angle. In
effect this makes the scan go backwards. The choice is made by comparing the
remainder found by dividing the lookat angle by both the mirror angel and twice
the mirror angle. If they are the same, we want the normal image. If they are
different, the reflected image is appropriate.

Repos

Peter Elsea 1/25/12 12

After this is done the angle is converted back to radians from –pi to pi, and the
polar coordinates back to Cartesian. Here are some examples with various mirror
angles.

original 180 degrees

90 degrees 60 degrees

45 degrees 36 degrees
Figure 22.

30 degrees 22.5 degrees

Repos

Peter Elsea 1/25/12 13

18 degrees 15 degrees

12.25 degrees 7.5 degrees

6.125 degrees 3 degrees
Figure 23.

Using relative mode
Jit.repos has two modes, which determine the precise effect of the control matrix.
Heretofore we have used absolute mode (0), where the source of an output cell is
the location specified in the control matrix. In relative mode (1) the source of an
output cell is the address of the cell plus the contents of the same cell in the
control matrix. If you are in relative mode, and the control matrix is filled with
0s, the input is passed straight through. Relative mode can be responsive in real
time, as follows.

First I will create a control matrix that contains some simple trig functions. The
make control patcher has to be modified to handle floats as shown in figure 24.

Repos

Peter Elsea 1/25/12 14

Figure 24.
Now the control matrix is set up like this:

Figure 25

The matrix applied to jit.repos must be char or long. Since chars cannot take
negative values, long is used the most. In figure 25, the float trig functions from
the control matrix are run through jit.op for scaling and converted to longs. The
multiplier in jit.op will determine how much effect is applied, and since this is

Repos

Peter Elsea 1/25/12 15

just a multiply on a pre-computed matrix, it will respond instantly. Here are
some examples.

Amount 2. Amount 4.

Amount 8. Amount 16.

Amount 32 Amount 128.

Dynamic Repos

Using quicktime
Relative repos control matrices can be stored as a quicktime movie, enabling
some nifty animations. This example creates an expanding ripple. It starts with a
function generator:

Repos

Peter Elsea 1/25/12 16

Figure 26.
This part of the patch is dedicated to filling the matrix with the function

F[x] = (1-kx)sin(x)

with x ranging from 0 to 8π. That will be a sine wave that fades over 4 cycles, as
shown.

Repos

Peter Elsea 1/25/12 17

Figure 27.
Figure 27 is the mechanism for applying the function. This will plug into a
modified makecontrol patch (figure 29.) The X and Y coordinates are centered,
then converted to polar form. The angle is unmodified, but the radius has a value
from the function added. The radius is only changed a bit, but that will
eventually be magnified. The value obtained from the function is offset by a
control that varies with each frame. Note that the offset is reversed by
subtracting the radius from the control. The control value will range from 0 to
320, so the offset radius will sweep from -160 to 0 at the start and from 160 to 320
at the end. In conjunction with the split object, this will present three possibilities
for each radius operation. At the start, all values will be negative, and produce
no change to the image. As the offset expands, pixels from the center to the offset
will be modified by the function. Note the function is highest in amplitude at the
beginning. Eventually, the offset becomes larger than the image and the center
area is unaffected. The control matrices are visualized in figure 28. Gray
represents no change.

Figure 28

Repos

Peter Elsea 1/25/12 18

Figure 29.

The patch of figure 29 generates the series of matrices. For each frame, a set of
uzis produce coordinates for figure 27 (included in the ripple sub-patch) and the
results are stuffed into a matrix of char that can be recorded by jit.qt.record. The
float values produced by the mechanism of figure 27 are interpolated to chars in
the range 0 255. These values need some massage to control the repos as shown
in figure 30. These operations reverse the steps. The char matrix output by
jit.qt.movie is converted to float32, 0.5 is subtracted, then the effect is multiplied
as desired.

Repos

Peter Elsea 1/25/12 19

Figure 30.

Similar animations can be created by capturing control frames in a matrix set, but
the movie approach is more flexible.

Using Matrixsets
There are some limits to the use of QuickTime movies to store repos control
matrices. Since the QuickTime format converts all data to 24 bit color, cell values
greater than 255 cannot be stored. This pretty much limits QuickTime control to
relative mode. For more grandiose animated transformations, matrixsets are the
best choice. These can be quite large, so memory could be an issue. The
mechanism for recording repos action into a matrix set is very much like figure
29.

Repos

Peter Elsea 1/25/12 20

Figure 31.

Playback is simple too. The image shown in figure 32 is derived from Julia sets.
To find out more, read on.

Figure 32. Several stages of repose controlled by matrixset.

Repos

Peter Elsea 1/25/12 21

Repos and the Julia set
The Julia set is an interesting construct. It is a grouping found by iterating this
formula

Zi+1 = Z2 + C
Equation 1.

Where Z and C are complex numbers. An equivalent formula pair that’s
appropriate to our needs is:

Xn+1 = X2 – Y2 + A

Yn+1 = 2*X*Y + B

Equation 2.

These map the real part of Z to X and the imaginary part to Y, with A the real
part of C and B the imaginary part of C. The typical application for these is to try
hundreds of iterations for various values of A and B. If the X and Y values stay
on the screen, the value pair (or C) is a member of the set. This is the famous
Mandelbrot set. (figure 33.)

Figure 33. The Mandelbrot set

Most mathematicians are interested in a simple case for any starting pair-- does it
stay on the page as the formula is iterated, or do the values increase to infinity.

A Julia set is the set of Z (X,Y pairs) that stay on the screen for a given C. These
sets may be spots all over the screen, or may form uniquely twisted shapes.
Figure 34 shows one example for C = -0.38. The screen area is -1 to 1 in the Y
direction. The black areas of the image are values that have jumped out of range
(they will never return) and the blue areas are a value that are approaching 0,0.

Repos

Peter Elsea 1/25/12 22

 A = -0.38 B=0. 1 iteration 2 iterations

3 iterations 5 iterations
Figure 34.

The colored portion of the image is a Julia set. Further iterations make the red
and green regions thinner and the edge more crinkly.

Even if you don’t understand the math concepts here, note that these formulas
take X and Y in and give a new X and Y out. That’s grist for jit.repos. For each
cell in the control matrix, transform its own coordinates with equation 2. Even if
we just apply a few iterations, we see transformations that are uniquely strange.

What generally happens is that one iteration gives a nearly recognizable twisted
image, and additional iterations begin to approach the shape of the set. Different
A and B values give very different shapes:

A = 0.075 B = 0. 1 iteration A = 0.075 B = 0.43 1 iteration

Repos

Peter Elsea 1/25/12 23

A = 0.075 B = -0.43 2 iterations A = - 0.75 B = 0 6 iterations

A = 0 B = 1 6 iterations A = -1.75 B = 0 4 iterations
Figure 35.

There are too many shapes and variations to give examples of every possibility.
One nice feature is that slight changes of A or B (on the order of 0.01) give slight
variation s in the shape. It’s possible to set up a slow evolution of the shape that
way. Since these are repositionings, different source materials will show up in
strikingly different ways. The source here is the wheel movie, which has a black
outer edge. If a frame is colored at the edge some interesting transitions show
up. Here’s the dishes movie with boundmode = 3

A = -1.75 B = 0 4 iterations A= -0.69 B = 0.44 6 iterations

Repos

Peter Elsea 1/25/12 24

A = -0.69 B = 0.44 2 iterations A = -0.69 B = 0.44 1 iteration
Figure 36
Most of the usable A and B values are found within the Mandelbrot set, although
values off the set will give interesting forms with only one or two iterations.

 A in the set ranges from –2 to 0.35 and B from – 1 to 1. The really twisted images
come from the edge zone.

Here’s how the Julia set generator works:

Figure 37.

Repos

Peter Elsea 1/25/12 25

Figure 38. Contents of iterateme

The uzi in figure 37 determines the number of iterations. The values from A and
B set the constants in the iteration. The first X and Y values for th computation
are taken from the coordinates on the screen. The X and Y results of each
iteration are then reapplied to the formula as many times as desired.

