
OpenGL in Jitter

Peter Elsea 3/4/13 1

OpenGL in Jitter

Background
OpenGL is a protocol for writing three dimensional object modeling code. Nearly all of
the major animation programs use it, and the video graphic cards in most computers
support it in hardware, so openGL scenes can be rendered with blazing speed. OpenGL is
at the heart of modern computer games.

The concept of openGL is very simple. A point is defined by three values describing its
location in 3 dimensional space. This space has the origin at the center [0, 0, 0], with the
X axis extending to the right, the Y axis pointing up, and the Z axis coming out of the
screen. The dimensions are in floating point units, usually with an X of 1.0 [1, 0, 0] at the
right edge of visibility. (Actually, what is visible depends on the point of view, which can
be changed with various camera commands, explained later.)

A group of three values is also often used to define a vector. A vector determines distance
and direction. It is interpreted as an arrow from [0,0,0] to [X,Y,Z].

• The length of a vector is sqrt(X^2 + Y^2 + Z^2).
• Vectors are added by adding up the X, Y, and Z components.
• We often scale vectors by multiplying each component by the same value.
• It is possible to multiply vectors, but we shouldn't need to.

Vectors are used in many ways- for instance, when we want to define an orientation (up,
tilt, whatever) a vector is generally used. Often we speak of a "unit vector" which is a
vector of length one. You can visualize this as a radius line of a sphere.

Shapes.
Shapes are specified as a series of points called vertices.
Vertices can be connected by lines. Variations on the connection are line_strip and
line_loop. (see figure 1.)
Three vertices define a triangle. The vertices should be listed in counterclockwise
order1. (Otherwise you are looking at the back)

• Triangle_strips and triangle_fans are connected groups of triangles.
• Four vertices define a quad. Again, counterclockwise order.
• A quad_strip joins several quads.
• Simple polygons can be defined by a list of vertices.

1 This is the "right hand rule". If the fingers on your right had curl in the direction of the
vertices, your thumb points to the front.

OpenGL in Jitter

Peter Elsea 3/4/13 2

Figure 1. Geometric Primitives (from the OpenGL redbook. Note the vertex order is
wrong!)

These primitives can be combined to become facets or faces of 3 dimensional objects. If
the faces are small, the object may appear smoothly curved. Building objects from
vertices is amazingly tedious, so we usually leave the details to a modeling program like
Maya ($1000), TurboCad ($500) or Wings3d (free). Jitter also has many features to
simplify the work.

Every object has its own origin. When you position an object in openGL space, you
specify the location of its origin. The shape also has axes for rotation. These run through
the origin with Z coming out the top.

Not all of the faces of a three dimensional object will be visible. The program can save
time by not drawing them, a process known as culling.

Colors and lighting
Shapes have a set of characteristics called material properties. These are mostly color,
which is defined by RGBA values (note the different order from quicktime colors). These
are specified according to the kind of light involved, and only make sense with some
understanding of the general lighting scheme.

OpenGL in Jitter

Peter Elsea 3/4/13 3

The lighting in openGL includes ambient light and light from specific sources. (Jitter
only includes one specific source.) Lighting parameters are specified both for light
sources and the way objects reflect light. They can all have different colors:

• Ambient. Light from everywhere, like the blue of the sky.
• Diffuse. Light from a specific source that scatters on reflection (as from a rough

surface).
• Specular. Light from a specific source that reflects in a narrow band. (An object's

shininess parameter affects how tight this reflection is.)
• Emissive. Objects can glow from within.

The material colors interact with the source colors in a realistic manner, so a red object in
blue light looks black. An object's orientation with the light source generates some
shadowing. In general the shadows take on the ambient color and the highlights are
diffuse and specular. These shadows are calculated using vertex properties called
normals, which conceptually stick out of flat surfaces. Normals are another reason we use
software to design shapes.

The light reflected from an object is diminished if the object is far away. This effect is
known as fog. Fog has a color, which reduces light components.

Complex colors are applied as textures, which essentially print an image on the object.

Using OpenGL in Jitter
The jitter openGL objects are prefaced with jit.gl. These are mostly designed to make
openGL available in a painless way. As always, making life easy might mean hiding
options, but just about everything is available if you dig enough.

Jit.gl.render
Jit.gl.render is the key object in the openGL world. Every Gl patch needs something like
figure 2. in it:

Figure 2.

OpenGL in Jitter

Peter Elsea 3/4/13 4

The argument in jit.gl.render is the "drawing context". All jit.gl objects with this name
will be created in this context, and the results displayed in a jit.window2 or pwindow of
the same name (you can name a pwindow with its inspector.) The qmetro clocks screen
updates in the usual way. The erase message clears the windows, the bang sent to draw
(or other destination of your choice) may be useful for mechanisms that affect the
drawing, and the bang directly to render draws the image.

Note you can only draw to one destination. That destination can be a jit.matrix if you
need the image in more than one place. Unfortunately, drawing to a matrix uses CPU
rendering instead of the graphics card, so there is a significant loss of efficiency.

No more connections to jit.render are needed for basic drawing. Other attributes can be
set, and I'll cover them as I go along. The actual drawing is handled by a variety of
drawing objects, which interact with the render object via the context name. There is no
limit to the number of objects that can be connected to a single render context, but the
more you ask jitter to do the slower it runs. Most drawing is amazingly fast-- I have
drawn a hundred objects with no noticeable slowing.

Jit.gl.plato
We'll start with some experiments with jit.gl.plato. jit.gl.plato contains the drawing
commands to produce a platonic solid- that is a tetrahedron, hexahedron (cube),
octahedron, dodecahedron, or icosahedron. Figure 3. shows the object and essential
support items

Figure 3.

The initial view of jit.gl.plato is not impressive. (Figure 4.)

2 The window must have its depthbuffer attribute set to 1.

OpenGL in Jitter

Peter Elsea 3/4/13 5

Figure 4.
This is a tetrahedron too big to fit in the window, with no color or lighting.

• The scale message will modify the size. Scale can take one or three arguments.
With three, the form can be distorted.

• The message lighting_enable 1 will turn on lighting for the object. Without, it's
just a grey blob.

• Rotate to see the shape better. Rotate takes four arguments, one for an angle, and
three to define the axis to rotate about. Rotatexyz takes three arguments for
rotation about the X,Y and Z axes. (In degrees.)

• Set a color with the message color RGBA. The values should be between 0 and 1,
just perfect for the new version of swatch. (This is a simplified color scheme.
Advanced color features will be discussed later.)

• Move the object with the message position X Y Z.
• Change the shape with the message shape 1-5. You can also use the shape names.

Figure 5.

Drawing Controls
The poly_mode message controls how the object is rendered. It takes two arguments, as
faces viewed from the front and back can be treated differently.

0 is the default, rendering polygons.
1 is wireframe, lines connecting the vertices.
2 just shows the vertices as points.

OpenGL in Jitter

Peter Elsea 3/4/13 6

 (points are too tiny to show)
Figure 6.

The cull_face message prevents rendering of some faces. Mode 0 (default) does no
culling, 1 culls back faces, and 2 culls the front. The documentation disagrees with
reality. This has all been a bit buggy, so I suggest leaving the default on.

A parameter called smooth_shading can set the color to blend from vertex to vertex. This
doesn't matter on the angular objects like jit.gl.plato, but it will make nearly curved
objects like jit.gl.gridshape seem smooth.

A parameter called depth_enable turns on the 3D mechanisms. If your objects appear
absolutely bonkers, check that this is on.

Advanced Color
You can get more detailed control of object color by working with the individual material
qualities. These interact with the lighting qualities which can be set by commands sent to
the associated jit.gl.render object.

Figure 7.
The color command can be shut off with the message auto_material 0. This leaves a black
object.

Figure 8.

OpenGL in Jitter

Peter Elsea 3/4/13 7

The message mat_emission RGBA sets the object to glow. Note that there are no
shadows.

Figure 9.
The message mat_ambient RGBA sets the color that is reflected from ambient light. This
interacts with the light_ambient setting of the render context. Light_ambient seems to
default to around 0.1 0.1 0.1. This will reflect true color, but dimly. Mat-ambient is the
color in the shadows.

Figure 10.
The message mat_difuse RGBA sets the color as reflected from directional light. This
interacts with light_diffuse, which is normally 1 1 1. The intensity of reflection varies
with the angle between a face and the light source. You get the maximum color when the
normal of the surface points at the light. The position of the light can be changed by the
message light_position X Y Z to the render object.

Figure 11.
The message mat_specular RGBA sets the color of the faces that have the most direct
path from the light to the point of view. (The reflection path.) This interacts with
light_specular for color, and light_position to determine the facets that are affected. The
message shininess affects the width of the reflection zone.

The alpha channel will have no effect on object colors until their blend_enable attribute is
turned on.

OpenGL in Jitter

Peter Elsea 3/4/13 8

Textures
Textures apply arbitrary patterns to objects. A texture is defined in the render object, then
that texture is assigned to other objects. There are several ways to define textures, but the
easiest is:

• Send a matrix to a [prepend texture somename] object and on to the render object.
The matrix becomes the texture. Any matrix source may be used, including movie
or grab.

• Send the message (texture somename) to the drawing object. The texture image
will now be applied to the object.

The appearance of the texture may be modified by the tex_map message to the drawing
object. There are four modes

0. Default (varies with object).
1. Object linear. The texture is attached to the object. When we look at the

jit.gl.sketch object we'll see how this is specified.
2. Sphere map. The texture is reflected from the object.
3. Eye linear. As if you are looking through the object at the texture.

There are ways of modifying the texture dimensions via the render object, but it is frankly
better to take care of that sort of thing before sending an image to texture. One thing is
not made clear- textures are assumed to be square. Any other aspect ratio is interpolated
down to a square shape.

The tex_plane_s and tex_plane_t messages can be used to adjust the texture size relative
to the object size in modes 1 and 3 which use automatically generated texture
coordinates. The approach is a bit arcane, but this is how it goes:
Each point on the surface of an object is represented by four(!) values, x, y, z, w, where w
is used only for transformations of the point. It is usually left at 1, and our familiar triad is
x/w, y/w, z/w. The tex_plane messages define how the points on the texture are related to
points on the surface of an object. The points on the texture (which is two dimensional)
are defined as s, and t, similar to x and y. Each vertex of an object is given an s and t
component to define what spot on the texture should hit that vertex. (Object design
programs let us specify these values.) The tex_plane messages have 4 arguments, given
as a, b, c, d in the reference.

Tex_plane_s a b c d sets the s coordinate for each vertex as ax+by+cz+dw with x, y, z,
and w the coordinates of the vertex. Likewise tex_plane_t sets the t coordinate for each
vertex. In mode 1 the vertex coordinates are taken from the coordinates of the facet, so
the texture moves and turns with the object. In Mode 3 the vertex coordinates are in
global space, so the texture changes as the object moves. By some experimentation on a
cube you will find:

• Changing a in the s term stretches the texture in the horizontal direction.
• Changing b in the t term stretches the texture in the vertical direction.

OpenGL in Jitter

Peter Elsea 3/4/13 9

• Changing the sign of either of those reverses the image.
• If you change b in the s term or a in the t term, the image is skewed.
• Changing c in the s term stretches in the horizontal and wraps around the sides.
• Changing c in the t term stretches in the vertical and wraps around the top and

bottom.
• If you change c in both, the texture is skewed.
• Changing either d shifts the texture.

All of this is affected by how the object is initially constructed. For instance, vertex
coordinates are specified relative to an object's origin, which is the center of the
jit.gl.plato but the bottom left of jit.gl.text3D. So an image that nicely covers text will
have corners in the center of a platonic object. You can see this in figure 12.

Figure 12.
You will quickly notice that textures from matrices appear upside down. This is due to
the conflict between QuickTime and openGL coordinate systems. In QuickTime, the
vertical component is positive going down the screen. (Remember 0,0 is in the upper left
corner.) In OpenGL Y is positive going up.

There is also a jit.gl.texture object which allows much more detailed control of a texture.
It's complicated enough that it probably needs its own tutorial. The jit.gl.shader object
creates textures that interact with objects in a more complex way. There is an excellent
tutorial in the jitter tutorial set.

OpenGL in Jitter

Peter Elsea 3/4/13 10

A quick rundown of some OpenGL objects:

Jit.gl.gridshape

Figure 13.

Jit.gl.gridshape produces rounded objects: sphere, torus, cylinder, cube, plane, circle.
Otherwise it is pretty much interchangeable with jit.gl.plato. The smooth_shading
attribute will give a nice rounded look.

Text Objects

Jit.gl.text2d Jit.gl.text3d
Figure 14.
The text2d object prints on the window, with no concern for Z. You can set fonts, size,
and alignment, rotate the angle and so forth. All other objects appear behind the text. The
text3d object creates movie poster text with adjustable depth.

Jit.gl.videoplane

Figure 15.

OpenGL in Jitter

Peter Elsea 3/4/13 11

Jit.gl.videoplane is a sort of movie screen that you can position in space. Any matrix fed
to it will be displayed-- this includes movies and grab output.

The default size of the videoplane is 2.0 x 2.0. To precisely fit a 4:3 window, scale
jit.videoplanre to 1.11, 0.843. When an openGL window is resized, objects are resized
according to the Y dimension but keep their overall proportions. This means that when a
window displaying a videoplane is expanded to fullscreen, there will usually be extra
blank space at the edges.

Any color assigned to jit.gl.videoplane will interact with the color of the image. If
blend_enable is 1, the alpha value will fade the image in the videoplane, but the
videoplane will still block the view of other objects.

The image in videoplane is a texture, so texture values apply to some extent. There are
some texture messages special to jit.gl.videoplane. tex_scale_x and tex_scale_y will
zoom in on the image if the value is greater than 1. Then the tex_ofset_x and tex_offset_y
messages will move within the enlarged image.

Jit.gl.sketch

Figure 16.

Jit.gl.sketch lets you "draw" your own shapes. In addition to the OpenGL specified
commands, a lot of familiar items like plane, rectangle and cylinder are included. With a
bit of patience, you can build up a whole scene. The green figure in the image above was
drawn with the following script (in a message):

reset,
glcolor 0 1 0 1,
glbegin line_loop,
glvertex 0 1 0,
glvertex -0.58 -0.8 0,
glvertex 0.95 0.3 0,
glvertex -0.95 0.3 0,
glvertex 0.58 -0.8 0,
glend

3 It's not 1.33 because of the Z axis placement of the videoplane.

OpenGL in Jitter

Peter Elsea 3/4/13 12

These are drawing commands sent to jit.gl.sketch. Once a command is sent, it is
maintained in an internal list and executed each time jit.gl.sketch draws itself. The order
in which commands are executed is often important. There are commands that directly
manipulate the list, for instance by inserting a command at a specific point. The
command list is cleared by the reset command.

The coordinates in various commands are based on the point set by the position of the
jit.gl.sketch object. They are also relative to the front view-- i.e. a rotation of 0 in all axes.
That way rotate and position move everything specified in the sketch as a unit. The
easiest way to work out the vertex coordinates is to plan your sketch on graph paper. The
command axes 1 will show the origin and axes-- this can help line up parts of a complex
drawing.

A complete understanding of jit.gl.sketch is a complete understanding of the openGL
language, but here's a sampling of the commands.

Basic gl sketch commands
Reset clears the jit.gl.sketch command list. (glclear erases the entire window-- all
objects!)
glcolor sets the color for what is about to be drawn
glbegin sets the drawing primitive. Favorites are line_loop and triangles.
glvertex defines each vertex for the primitive. These will be connected according to the
active primitive. Remember that vertices must be specified in counterclockwise order to
present the front of a triangle to the camera.
glend marks the end of a primitive. (This can be skipped.)

Texture sketch commands
glbindtexture "name" attaches a texture to the following vertices. (The usual texture
commands work on the whole object.)
gltexcoord s t, Each vertex must be preceded by this to properly map the texture to the
primitive. gltexcoord 0. 0. specifies the upper left corner of the texture, 1. 1. is the lower
right.

QuickDraw style sketch commands
There are a set of commands reminiscent of the lcd commands. These can be freely
mixed with some gl style commands, like glcolor.

Moveto establishes a base point for the following operations.
lineto x y draws a line from the moveto point to x, y
linesegment x1 y1 z1 x2 y2 z2 draws a line from point xyz1 to xyz2.
shapeorient rot-x rot-y rot-z defines a plane for 2D drawing commands.
shapeslice a b sets resolution of 2D and 3D drawing commands. Low values make round
shapes blocky.
circle r draws a filled circle of radius r. Additional arguments set start and end angle in
degrees.
framecircle r draws an unfilled circle of radius r

OpenGL in Jitter

Peter Elsea 3/4/13 13

elipse r1 r2 draws a filled ellipse of radius r1(along x) and r2 (along y)
framellipse r1 r2 draws an unfilled ellipse of radius r1(along x) and r2 (along y)
plane x y draws a plane using the vertices of x y, -x y, -x -y, x -y.
roundedplane r x y draws a plane as above, with corners rounded as per r.
sphere r draws a 3D sphere with radius r. Additional arguments set start and end angles
(in degrees) on x and y axis.
torus r t draws a torus (doughnut) with a radius r and thickness t.
cylinder r1 r2 d draws a cylinder with front radius r1, back radius r2 and depth d. The
default shape slice makes this pretty rough.
cube x y z draws a brick with dimensions of 2*x, 2*y and 2*z.

There is a lot more to jit.gl.sketch. For instance, you can include any of the jit.gl objects
in a sketch by referring to their @name attributes (drawobject). Many techniques are
illustrated in the helpfile, and there is an extensive tutorial. For true mastery, study
openGL online. The actual redbook is pretty daunting, but there are many online tutorials.

Jit.gl.model

Figure 17.

Jit.gl.model lets you load in objects created in real 3D modeling programs such as Maya
or Wings3D. The model must be in the .obj format, which is widely supported. This will
usually be at least two files (which should be in the same folder). The .obj file contains
the geometry and the .mtl file contains the material information. It may refer to other files
for textures. It is possible if tedious to write .obj files by hand, but I don't recommend it.
It's worth learning what's in them, because you might want to make a simple edit of
someone else's file. (For instance, I did that to change the color of the teapot above.)

If a model does not have a .mtl file, the usual texture and color methods will apply4. It is
possible for models to contain groups. If they do, each group can have its own texture.
The drawgroup command can choose one of the groups to display.

4 You can detach an .obj file from its .mtl file by using # to comment out the mtlib
statement in the .obj file. Viz. #mtllib teapot.mtl

OpenGL in Jitter

Peter Elsea 3/4/13 14

Jit.gl.handle

Figure 18.

Jit.gl.handle allows mouse interaction to rotate the image. Jit.gl.handle can be attached to
a single object or the render object. In the latter case, the entire view is rotated. (Set the
jit.gl.handle object's inherit_transform to 1 when you do this.) When the mouse is clicked
on the window, axes orbits appear, and dragging the mouse perform the rotation. You
can have multiple handles in a scene, but their behavior is likely to be a bit chaotic--
reducing the handle radius will help.

Jit.gl.mesh

Figure 19.

Jit.gl.mesh lets you create an object from a matrix that specifies the vertices and other
open GL properties. The value of this may seem dubious, since the point of objects like
jit.gl.sketch and jit.gl.model is to manage the complexity of vertex specification.
However, jit.gl.mesh does offer a couple of functions that are not otherwise available.
Any of the geometry objects can produce matrices appropriate to use by jit.gl.mesh with a
little coercing. Once it is in matrix form, it can be saved. The only trick is to attach a
message box to the output of the generating object to see which drawing mode it uses.
That will not be saved, and you will have to set the draw_mode of the jit.gl.mesh by
hand.

Matrices are easy to manipulate to produce mutant images. The drawing above is an
xfade between a torus and a sphere. The xfade parameter controls a smooth morph
between the two. Figure 20 shows the patch I used.

OpenGL in Jitter

Peter Elsea 3/4/13 15

Figure 20.

Jit.gl.multiple

Figure 21.

Jit.gl.multiple copies objects created from jit.gl items such as jit.gl.plato. If you need
several similar objects, multiple is an efficient way of getting them. It can be a bit tricky
to set up, because the parameters of the copies are controlled in matrices, one each for
position, scale, rotate (or rotatexyx) color, and texture. The number of cells in the arrays
determine the number of copies. Each array is float32, with 3 or 4 panes depending on
what is controlled. The documentation skips a lot, but here are some vital clues:

• The attribute @targetname must match the @name of the object you wish to
copy.

• There must be a @glparams attribute with a list of parameters to independently
control. If position is not on the list, all copies occupy the same space.

• An int argument will produce inlets to connect control matrices-- these match the
glparams list.

• Targetmode affects the influence of parameters of the original on the copies. If
targetmode is 1, Scaling, position, etc of the original are ignored. You can move

OpenGL in Jitter

Peter Elsea 3/4/13 16

the original offscreen to hide it, and the copies will remain where the position
matrix puts them.

• If targetmode is 0, the values in the control matrix interact with the parameters of
the original: the position matrix defines an offset from the original's origin which
is multiplied by the original's scale. The scale matrix is multiplied by the
original's scale. A color matrix replaces the original's color.

• You must supply a matrix to set all of the parameters in the glparams list before
the copies will be displayed.

• The message [position_matrix pmat] will copy the values from a matrix named
"pmat" to set the position values. Similar messages apply to the other glparams.
This is not a connection-- the message must be resent every time the control
matrix is updated5.

Generating control matrices is going to be complex. Figure 22 illustrates a brute force
approach appropriate for a few copies.

Figure 22.

Figure 22 produced the image in figure 21. There are matrices to control position,
rotation, scale and color. Since the matrices all have dimension 3, there are 3 copies. The
cells in each control matrix are set by setcell commands. I have encapsulated most of this
to clarify the example.

5 You can leave the inlet argument off when you do this, but you still must list the
@glparams.

OpenGL in Jitter

Peter Elsea 3/4/13 17

Jit.gl.nurbs

Figure 23.

Jit.gl.nurbs creates a curvy surface from a matrix of control points. A NURBS is a Non-
Uniform Rational B-Spline curve. A simple way to look at is as a sheet of fairly stiff
rubber. You can poke at various places on the sheet and deform the rubber. The points are
specified as XYZ coordinates. The coordinates are contained in a matrix of 3 float32
style. This is passed through a prepend ctlmatrix object to get the jit.gl.nurbs to recognize
it.
Figure 24 shows another brute force control using jit.cellblock. This spaces the control
points evenly over a grid, but that is not necessary.

Figure 24.

OpenGL in Jitter

Peter Elsea 3/4/13 18

Jit.gl.graph

Figure 25.

Jit.gl.graph lets you create a 3 dimensional graph of changing data. It's the same as
jit.graph, but can be rotated in three dimensions. Figure 25 shows it used with jit.catch~.

Jit.gl.volume

Figure 26.

Jit.gl.volume visualizes a volumetric density map (in the words of the documentation). A
volumetric density map is a 3 dimensional matrix with a number in each cell that
specifies density. (Imagine a stack of glass bricks-- some are cloudy, some are clear. The
density value is how cloudy each is.) The problem with using jit.gl.volume is producing
three dimensional matrices with interesting patterns. It's not hard to "stretch" a two
dimensional image into jit.gl.volume. Figure 27 shows how to do this with jit.graph.

True 3D volumes require virtuoso matrix manipulation, probably with jit.expr. For
instance the second image of figure 26 was produced with the expression:

""in[0] *(1(abs(cos(norm[0]*TWOPI))*(abs(cos(norm[1]*TWOPI))*(abs(cos(norm[2]*TWOPI)))"

• The scale message to jit.gl.volume does not affect the size of the image. Instead, it
shaves off outer layers, revealing the inner structure.

• The full structure is 2 x 2 x 2. With the origin at 0 0 0, this places the field
somewhat outside the view frustrum. Moving the origin to 0 0 -1 makes it visible.

• The density and intensity values interact in mysterious ways. While the docs
speak of defaults of 0.5, values applied via messages are divided by 1000, so
that's is equivalent to density 500. For any given intensity there is a range of

OpenGL in Jitter

Peter Elsea 3/4/13 19

density from a solid cube to nothing. The transitions tend to be abrupt. For any
density, intensity is cyclical, with values that bloom and values that disappear.
The best results come from using density to get as fine an image as you can, then
tweak intensity by very small amounts.

• Higher resolution is possible by turning on the cubes attribute. Then the slices
parameter will determine how fine a line can be produced.

Other Functions
Some gl type objects use the video display processors for other purposes. For instance,
Jit.gl.slab is a programmable matrix processor. Since it runs in the video processor, it is
about 100 times faster than standard jitter operators like rota. This is discussed in a
tutorial called Shaders in Jitter.

