Visualization of Audio

Visualization is a type of video synthesis that generates images from audio input. The
effects of this can be tedious or sublime.

In a typical approach, audio information is mapped to visual attributes of simple shapes.
This is possible with a few simple mechanisms that can be applied to a wide range of
images. It is possible to derive the following types of information from an audio signal:

* Amplitude. This is related to the loudness of the sound. To match perception of the
listener, amplitude must be averaged over a brief period. Slightly differing averaging
times can produce quite different effects.

* Frequency. This is related to the pitch of the music. Accurate pitch extraction is only
possible with simple sounds, but some degree of error is tolerable in most pitch to
image mappings.

* Waveform. This is one way of representing timbre. Waveforms may be drawn
directly on the screen, but aside from a general association between the size of the
waveform loops and loudness, it is difficult to link sound quality with a particular
waveform.

* Spectrum. Another representation of timbre, spectrum produces a set of values that
can control many visual parameters or objects. Spectrum displays can convey timbre
with some accuracy (after practice), and if detailed enough can suggest pitch.

The following image attributes can be controlled by simple values:

* Size.

* Color.

¢ Shape.

e Position.

Our visualization toolkit will use any of these types of audio information to control any
of the image attributes.

Amplitude analysis

Amplitude is easy to detect with the average~ object, which calculates the mean sample
value over a period determined by the argument (in ms). The update period should be
adjusted to fit the input signal. Low frequency material may fool average~ if the update
rate is too fast. 20 hz has a period of 50 ms. There's a sort of reverse Nyquist going on
here-- in order to accurately average out low frequency tones, you must capture the entire
thing, so low update rates are most accurate. Of course too low a rate will miss some
detail of transients. In any case, the screen refresh rate of 60 hz makes measuring any
quicker than every 30 ms pointless. In practice, updating 5 times a second is plenty .

Peter Elsea 2004 1

Average~ has three modes:
* Bipolar just gives the mean—for most signals, this is 0, as they run both negative
and positive.
* Absolute is the mean of the absolute values. For a sine wave with amplitude of
1.0 this will be 0.67.
* RMS is the root mean squared of the values, which follows the sensitivity of the
ear reasonably well. For a sine wave of amplitude 1.0 this will be 0.707.

Avg~ is a simpler version of average that only produces an output when banged. It is
limited to absolute response, but may be easier to synchronize with a video generator
since its output is a float rather than a signal.

Sometimes we want to convert the output of average~ to dB. In Max version 4.5 there
are both atodb and atodb~ objects. atodb~ works at signal rate and is appropriate for
building dsp processors such as compressors. Atodb will work for video synthesis, since
we only do a few calculations per frame. Both implement the famous dB formula, which
in an expr object is

20*log10($1)

There is one problem with this expression: if the input is zero, the value returned by
log10 is not defined. When that happens, atodb will output -inf, which may mess up
processing somewhere down the patch. If we add 0.00001 to the output of average~

this problem is avoided, and we have the extra bonus of a predictable bottom to the range,
in this case -100 dB. Using 0.0001 as the fudge factor will give -80 as the low point,
which may be more useful.

Figure 1 shows a simple patch that uses the amplitude of a signal to control the size of a
picture. Jit.lcd will be the heart of most drawing, since it behaves much like a typical
bitmap display. Later we will look into the OpenGL environment. Jit.Icd is almost
identical to the plain lcd. The only significant difference is the lack of sprite support, but
since sprites just stored drawing commands, they won’t be missed much.

Figure 1. uses the drawpict feature of jit.Icd.. First, an image file is loaded into a matrix
named “face” with the importmovie command. This could be any type of image
recognized by QuickTime.

The number supplied by avg~ is used to set the arguments for drawpict. These arguments
indicate the horizontal coordinate of the top left corner, the vertical coordinate of the top
left corner, the width of the drawing and the height of the drawing.

The alpha layer is ignored by drawpict. With line drawings similar to the one shown, you

can make composite images by setting the penmode to 1 (or), but usually you will have
one jit.lcd per drawing and combine the outputs with other jitter techniques.

Peter Elsea 2004 2.

importmovie

jit.matrix face 4 char 160 120

metro 35 [| l

I |

jil.t'.lc:u:l 4 char 320 242

[fll?’ T
(/ Elr: clear, drawpict face 60 $1 0 $2
J

Figure 1. Amplitude controlling image size

Drawing directly to jit.lcd

Figure 2 does more complex drawing. It’s 64 circles drawn touching at the center of the
image. Any image that is radially symmetrical like this one is best drawn with polar
coordinates. The metro drives the whole process, starting with the amplitude
measurement and clearing the lcd.

The uzi generates 64 numbers, which are translated into angles (in radians) for the
poltocar object. The amplitude (scaled from the original values of > 1.0) is banged into

the radius input of the poltocar, which produces an origin in Cartesian coordinates for
each circle.

Peter Elsea 2004 3

- :

metro 30

measure amplitude :
clear led

— =™
uzi 64 29

*0.098175 .|-

1T

float 0. | radius |
L

poltocar J

ladd 160 120 160 120

prepend frameoval clear
T J

T
jit.led 4 char 320 240

Figure 2.

The arguments to frameoval are the rectangle that encloses the circle. To get these from
the origin and move to the center of the lcd, the arguments are calculated thus:

e Leftis origin X + center X — radius

* Topisorigin Y + center Y — radius

* Bottom is origin X + center X + radius

* Rightisorigin Y + center Y + radius

The dynamics of this patch are pretty simple. The image expands as the music gets loud,
pretty much pulsing to a beat'. A more subtle effect is produced by keeping the circles
constant in size and moving the origins. Here’s a modification to the upper part of the
patch of figure 2:

" This can actually make some people sick if not used carefully.

Peter Elsea 2004 4

* L]
uzi 32

* EI 19634

lswap 0 -1 0
unlist EJ
I

pfl%}carh [;D

P :
metro 30
1
avg~
I
* 2000
I
llast 4

g S |
-2 -2 +2 +7
I T
pack 0000
T

Figure 3.

The automatic radius control has been removed and replaced by a user control.

The number of circles has been cut to 32. The amplitude measurements are now gathered
into a list, expanded into a retrograde (by Iswap, giving an ordering of 0 1 232 1 0) and
via unlist used to give varied origins for the circles.

Results are shown in figure 4.

Peter Elsea 2004 5

D__.'I:j.- I__ D
D D
(¢ 0) O i:]
c D
Figure 4.

These also appear to spin, because 7 measurements are used to produce the 32 circles. If
you look at 5B, you will notice a lone circle at the right side, where all the other outer
circle are in pairs. This anomaly precesses around the image.

We can add even more complexity by only clearing the jit.lcd every fourth time.

Figure 5.

This persistence effect can also be achieved with feedback. To find more about drawing
in LCD, look at the Max & Graphics tutorial.

Color considerations in jit.Icd

We can add color to the frameoval message just by tacking rgb values to the arguments.
Figure 6 shows the principle of synchronizing the color change with the uzi so each circle
has a unique but stable color.

Peter Elsea 2004 6

s S
-2 -2 (42 [+2
L L L 1

pack 0 000

ladd 160 120 160 120

index from :
] uzi |
L
expr ($i1 % 16) * 8 + %i2
I
hsl $1 255 128
I

St

[
Zl join
I

prepend frameoval
|

clear

J

brgbh 000
|

jit.led 4 char 320 240

s

Figure 6. Adding color to jit.lcd drawing

The patch above the pack is the same as figure 2. The index value from the uzi has been
used to peek into a swatch object for a cheap conversion from hue to rgb color values.
The expression forces the index to repeat 0 to 15 four times and multiplies this by 8 to
increase the range of color change. That produces colors that balance through the image.
The number box allows tweaking the color range. Note that the background of jit.Icd has
been set to black with the message brgb 0 0 0, and the swatch has been set to "old style

output".

Pitch Driven Drawings

Pitch extraction is tricky business. There are a couple of third party pitch extractors like
fiddle~, but the best graphics results will happen when pitch is derived from Midi data.

Peter Elsea 2004

88

Once pitch is known, mapping to graphic elements is very straightforward. Here is a
patcher that triggers a short animation with each note.

X -

l notein

metro 30 I -‘_

stripnote

[T r
gate 0, $1 500
I . L l L] - . - L
uzi 24 line * 2 - 230

& - IB(\
-1 0
pack 0000

|5 |

float. * D.EE‘I?E clear, bang
I 7 | || g
poltocar H

/

2 +
1

2

-2
1

ack000

= -
S+

==
dd000O0

o

prepend frameoval E:Iear
'*
h
jit.led 4 char 320 240

—

||

Figure 7.

This has many elements from figure 2. Drawing is triggered by the notein object, when a
velocity opens the gate and lets bangs reach the uzi. The pitch and velocity are used to set
the origin for the figure, with pitch mapped left to right and velocity to height. Velocity
also sets the target for a line, in a manner that should be familiar from synthesis in MSP.
The line sets the radius of the circle, which is drawn by uzi and poltocar as before. The
effect is a little explosion of dots that will be wider on high velocity notes. Note that the
uzi is and turned off when the line hits its end. The line end also sends a clear and bang
message to the lcd. This makes the lcd go blank after the explosion is finished.

To draw multiple notes at once, we use poly~.
The drawing mechanism is converted into a subpatch as in figure 8.

Peter Elsea 2004 R

in 1

E_ticks T
unpack
I - ":. Eadbang
stripnote I
/,/" random 256
l_“ [/ I 1$1 255128
gate 0, $1 500 S
I = —-— l - - - - L
uzi 24 line *2 - 230
- = old style)
pack 0000000

float 0. *0.26179

I 7

poltocar

1 T 1
0o

ack 00

=

—

==

ladd DO OO

I

prepend frameoval

out 1

Figure 8.

Here the note data is treated exactly the same way, with the addition of a random color
that will be determined when the patcher is opened. The bangs from the metro in the
main patch are brought in via the ticks receive object. Note that the values used to gate
the ticks to uzi can also serve to provide busy status to thispoly~. The patch is saved as
boom_poly.

Figure 9 shows the enclosing patch. There’s very little change here. The midinote
message to poly~ will trigger drawing from the first available subpatch.

Peter Elsea 2004 9

i

metro 3[].

Ih
-

s ticks

b

=

T

clear

notein

[\

pack

i

midinote $1 $2

l

poly~ boom_poly 12

jit.led 4 char 320 240

Figure 9.

Peter Elsea 2004

10

Drawing waveforms: the easy way.

Since version 1.6, Jitter has offered a pair of objects that greatly simplify the display of
waveforms. Here's how to use jit.catch~ and jit.graph to make an oscilloscope:

X 183.75

1

- i —~
gmetro 30 cycle~ 440. 1.
R

/

L
*~0
-

jit.catch~ @maode 3 @framesize 240

jT’E.graph 4 char 240 180 @height 180 @mode 1

Figure 10.

There are several factors that are important in getting a clean display. Most are related to
attributes of the jit.catch and jit.graph objects.

The framesize attribute of jit.catch determines how much wave will be displayed across
the window. Specifically it's the number of samples handed to jit.graph at a time. The
best setting is the same as the width of the display window. Then jit.graph will not need
to resample the curve and the result will be nice and smooth. Otherwise, there will be
some bumps in the curve.

The height attribute of jit.graph defines the number of pixels to use for a full amplitude
signal (-1.0 to 1.0). This should match the height of the display window. The effect of a
mismatch is gaps in the curve. Just for good measure, I set the matrix dimensions for

jit.graph to match the window.

Jit.catch has several modes of operation:

Peter Elsea 2004 11

Mode 0 dumps everything since last output in one long matrix. Jit.graph will resample
this to squeeze the entire signal into the display. Since there is no synchronization
between the bangs that cause output and the signal, the display will dance around.

Mode 1 dumps everything since the last output as a matrix of framesize by the number of
rows it takes to hold the whole thing. Jit.graph will display the first frame, and others are
available via jit.unpack. This might be useful in displaying successive frames of an fft in

a waterfall type spectrogram. This mode is not synchronized either.

Mode 2 skips to the most recent frame and outputs only that. It produces snapshots of the
waveform at each bang. It is not synched.

Mode 3 outputs the most recent frame but always starts at the point where the input
matches a trigger threshold. This keeps the image stable in the display. Interestingly, the
value defined by trigthresh is shown in the center of the display rather than the left edge,
as is typical of oscilloscopes. If trigthresh is outside the range of signal values, the
display will not sync.

Mode 0 Mode 1

Mode 2 Mode 3
Figure 11

Jit.graph also has modes. These determine how the data from jit.catch are displayed.
Figure 11 illustrates the options. The colors of the display are set by attributes of it.graph.

Peter Elsea 2004 12

Brgb determines the background color, with 255 255 255 specifying white. Frgb
determines the drawing color: that requires four arguments, the first setting alpha.

Drawing Waveforms the Old Way

Jit.graph is great object, but there is still some benefit from displaying waveforms using
jit.led. Figure 12 shows the display section, which will also generate some
synchronization signals.

1

gmetro 30

[

tbbb

I

rtoLCD s ticks clear s newframe

—]

jit.led 4 char 320 240

Figure 12.

Note that distinct bangs are sent to newframe and well as ticks. Newframe will initialize
drawing routines and ticks will trigger them. Separating the functions this way keeps the
image on the screen as long as possible and reduces flicker. Figure 13 shows the signal

capture section,

Peter Elsea 2004 13

rticks signal 2

T : to |
J. 1.04 Eﬁplay mode $1
p co-ordinates jit.catch~ @mode 3 @framesize 320
_ .
L i
jit.pack 2
Figure 13. _

Catch creates a 1-row matrix with 320 sample values. The receipt of a bang from the
gmetro via ticks sends this matrix to a jit.pack. The jit.pack object will create a matrix
that is 2 rows, each 320 values long. The purpose of the co-ordinates subpatcher is to

create the X values for graphing the waveform. The internal works are shown in figure
14.

e

0.5

ffsat $1- scale $1-

—o

|

t.gencoord 1 float32 320 @offset -1. @scale 2.

jit

matrix coords 1 float32 320

-
t=

Figure 14. (This should include a loadbang to gencoord for initialization.)

Jit.gencoord produces a matrix that is filled with a float version of the index of each cell.
Float indexing assigns a value of 1.0 to the last member of a data array, 0.0 to the first
and appropriate intermediate values in between. That way an index of 0.5 points to the
center regardless of the size of the array. We have seen this in buffer~ and related objects.
In jit.gencoord, the scale and offset attributes modify the index in a familiar way: all
values are multiplied by scale, then offset is subtracted. I use them here because I want to
match the positive and negative signal values with positive and negative coordinates.
That way the image will be centered in the LCD when I manipulate the size. Notice in
figure 14 the result of the gencoord operation is stored in a matrix and banged out when
needed. There's no point in recalculating indices if they are not changed.

Peter Elsea 2004 14

The matrix from jit.pack has the X coordinates in the first row and the signal values in the
second row. Figure 15 shows how these are processed.

L £
jit.pack 2

jit.iter

Imult 160 120

ladd 160 120 /¢ newframe

’—T T
set lineto set moveto

L

F.:u'repend lineto

s tolLCD

Figure 15.

Jit.iter breaks the matrix into lists of X-Y pairs. These are manipulated individually and
used to draw short lines in the jit. LCD. Lmult expands the values to the size of the
display, and ladd offsets the drawing to the center of the screen. The moveto and lineto
commands for LCD manipulate the drawing pen. Moveto locates the pen without
drawing, then lineto draws from wherever the pen is to the desired destination. One
moveto at the beginning starts drawing at the left edge. It may seem inefficient to set the
prepend contents to lineto for every segment, but any code that determined it was
unnecessary would take more time to execute than the set command. The result of this
drawing is shown in figure 16.

Figure 16.

Jit.graph and jot.plot are presumably more efficient in generating this image, but now that
we have access to all of the calculations, we can modify the image in ways not afforded
by jit.graph. For instance, we can produce a mirrored waveshape by duplicating the
drawing routine, with one minor modification. See figures 17 and 18

Peter Elsea 2004 15

& o
jit.pack 2

S O O R
= =3

jit.iter jit.iter
Imult 160 -120 Imult 160 120
ladd 160 120 1 newframe ladd 160 120 ¢ newframe
L - I - L - I -
set lineto -S.-Et moveto set lineto E-Et moveto
;.:u'repend lineto ;.:u'repend lineto
s tolLCD s tolLCD
Figure 17.
Figure 18.

We can generate filled patterns with the scheme in figure 19.

- =
jit.pack 2
ji‘T..I E

H
|
|

i

I _

Imult 160 120 160 -120

ladd 160 120 160 120

I

prepend linesegment

5 toLCD

Figure 19.

Peter Elsea 2004 16

The line segment command takes two points for arguments; a start and stop. Drawing
from the wave to the inversion results in the block patterns shown. This is similar to
jit.graph in mode 2, But these blocks can be made more colorful by the modification in
figure 20.

jit.iter

Iswap 0 1 01

imult 160 120 160 -120

I

p colors |fdd 160 120 160 120 l ' ‘ l‘ |'||I| *l | |‘| “

prepend linesegment

5 toLCD

Figure 20.
Of course the secret is in the colors patcher, but you can probably guess what you might
find in there.

il g
I

lswap 1
expr ($f1 * §i2 + 128) % 256

hsl $1 256 128

frgb 1 52 $3

Figure 21.

Figure 21 should just give you ideas. This takes the signal value (Lswap 1 grabs the
second member of the input list) and generates a color proportionate to the level. You
may wish to set the color by overall amplitude or some other method.

Polar waves
Polar display of waveforms provides an interesting alternative to the oscilloscope style.

Peter Elsea 2004 17

To generate polar displays, I've made some changes to the top of the patch. The jit.catch
mechanism is modified as shown in figure 22.

oL
jit.catch~ @mode 3 @framesize 160
'ﬁ -—

H h"‘i
Ty,
o

"
jit.dimmap @map 0 @invert 1
i i

jit.concat
figure 22.

This grabs a half frame, reverses it (via jit.dimmap) and adds that to the original. The
result is a palindrome- the beginning and end will be mirror images. (This trick is useful
any time you want a symmetrical display.) The coordinates are also modified to run from
-3.14 to 3.14, which will be the angles of the display. The meat of the patch is in figure
23.

jT'E.pack 2

jit.iter

ladd 160 120 r newframe

—— T
set lineto set moveto
| J

;.:u'repend lineto

5 toLCD

Figure 23.

Here the signal is taken as the radius and the angle from the coordinate generator. Since
poltocar requires the angle at the right inlet, Iswap is used to exchange the two numbers.
These are unpacked, and some math done on the radius. The modified value is applied to
poltocar, then treated just like figure 15. The results can be seen in figure 24. These

Peter Elsea 2004 1R

butterfly-like shapes flicker and jump with the audio. The radius control sets the size of
the circle generated when there is no signal, and the modulation controls the size of the
lobes produced by the signal.

2

Figure 24.

Some additions will turn this into a solid shape with colors

! |~
-
Figure 25

Here’s the modified patch:

Peter Elsea 2004 19

j'i.'E.pack 2

j'i.'E.iter

-2 178 odulati
lswap modulation
unpack 0. 0. 23 radius

L
space |10.78 | Gxpr $f1 - $i2 + $i3

l I:D'H l 1
P

oltocar FID“DCEF

I S =
p colors pack 0. 0. pack 0. 0.

N

ladd 160 120 ladd 160 120

1 —

pack 160 120 0 0

i

prepend linesegment

.

5 tolLCD

Figure 26.

This calculates two points for each sample value and draws a line between them. The line
is part of the radius at each angle-- the end of the line is determined by the signal value,
and the start of the line is some percentage of that. Thus the space control adjusts the
thickness of the solid section.

X Y Waveforms

Two related but somewhat different waveforms (say a stereo pair) can be displayed in
the so-called XY format. One wave provides the X or width value and the other provides
the Y for height. The most famous examples of this are the Lissajous figures, which are
described in detail in the tutorial “The Art of Lissajous.”

To get an XY display, we just replace the coordinate generator with a 2 channel jit.catch
object as shown in figure 27.

Peter Elsea 2004 20

rticks v

jE.n::atchm 2 @mode 2 @framesize 320
- -

M“'f"""!{h .
jititer | 718 | size

Imult 160

ladd 160 120+ newframe

S T

set lineto set moveto

R

E:'repend lineto

s toLCD

Figure 27.

You will also note the size control has been modified to produce a square image. Initial
results are likely to be disappointing, as figure 28 suggests.

Figure 28.
This is the basic scribble. It’s quite dynamic, and will fill the screen sometimes, but with

most material it will stick close to the diagonal, and quickly becomes tedious. It can be
helped with coloring techniques and various jitter processes.

Peter Elsea 2004 21

We can do better by using classic Lissajous figures for the basic shape. This is done by
adding a pair of cycles to the recording system.

(150. | [046 | WPE" L1so. | [o. |
T~ e - T L

cy

-

cle~ 55, sfplay~ 2 Eyt:le~ 55,

NIEYl

j.i.T.._n::atch'— 2 @mode 2 @framesize 320
- -

hiay, -
g

."f.-.'
"l
jititer |1 718 | size
Imult 160
ladd 160 120t newframe
SE—— T

set lineto set moveto

L

E:'repend lineto

5 toLCD

Figure 29.

The frequency, amplitude and phase controls will be manipulated to generate the figures.
The left and right input signals are added to these and will turn the smooth curves of
Lissajous into something more wiggly. (The ratios are frequency ratios of the base
pattern.)

Figure 30A 1:1 with no audio 30B 1:1,audioaddedtoY

Peter Elsea 2004 2.

30C 1:2 with audio added to Y 30D 5:1 with audio on X

The stills don’t really do these justice. With moderate amounts of audio added, the
Lissajous figures acquire extra depth and dynamic action.

Spectrum Driven Images

The spectrum of an audio signal can also be used to generate images. One approach is to
take a fast Fourier transform with the fft~ and put that into the same process that shows
waveforms.

'-.l" -—
fit~ 5125120
T ~ T,

rticks

poltocar~ e,

= - *I*‘

" u.-"
™

jit.catch~ 2 @mode 2 {@framesize 512

-
Jit.iter
I=-
lswap

I -
Imult 3 50

'T
L -
ladd 0 120

I

prepend lineto moveto $1 120

-
5 tolLCD

Figure 31.

Peter Elsea 2004 723

This is right out of the fft~ help file. The cartopol~ converts the fft data into magnitude
and phase form. Note that we record the fft into the left channel of a very short buffer~
and the fft index into the right channel. Displaying this is very much like the XY
waveform technique. The left channel provides amplitude and the right channel assures
that the sample will be placed in the proper spot on the screen.

A couple of things should be mentioned here. There are 512 samples in the fft, so the
jit.lced must be expanded to show them all. Also the code is modified to start drawing at
the left edge instead of the center. The moveto mechanism displays each bin as a vertical
line. If I displayed all of this, the result would be figure 32.

II-.IJ.-i\.- . -Ii-.lj.-\.-

Figure 32.

You can see there’s a little bit of action at each end, but the middle is a wasteland.
Everything above bin number 60 or so is always so close to O that it won’t show, and bins
above 256 are a reflection of the first half of the fft.* The patch in figure 31 actually
produces this:

Figure 33
By multiplying the X value (index) by three the image is stretched and the duplication
lost.

> If this is news to you, you may want to look at the Fourier Notes tutorial.

Peter Elsea 2004 74

A radial display of the fft can be interesting:

Figure 34

Here is the patch that makes it happen:

ST TTET T
M L]

! E sfplay=

-t -
fit~ 5125120
T -

-y

Kﬁ
'\o
°
g

- Ty
.

rticks

poltocar~ ",
- — .'*-r.
[l -
- b'h

jit.catch~ 2 @mode 2 @framesize 512

—
Jit.iter

Imult 50 0.9817

T

poltocar

| N

pack 0. 0.

[

ladd 160 120

I

p colors prepend lineto moveto 160 120

s toLCD

Figure 35

The fft index is multiplied by 0.98171 which divides the circle into 64 spokes. This
means 8 different points of the fft will be combined on each spoke. The reflection points
will give the image a bit of symmetry.

Peter Elsea 2004 25

Deriving Spectra with a Filter Bank

An alternate approach to generating images from spectra of sounds is to use the fast fixed
filter bank. This gives an effect like the old analog color organs, where a set of band pass
filters would be used to power colored light bulbs. Here’s an ambitious example:

amenenas . EE;
IIIT —

rticks @ Zﬂ’

I L - _ 4

p thefiter | 46 | Spread X
_’/4 / %+] 33’
p colors p lightorg Ej%]t>
-\I =+

s tolLCD >

Figure 36.

The broad outlines of the process are show by the sub patchers—the incoming audio is
analyzed by a filter, and the filter output generates shapes that are drawn in the jit.lcd and
appear in the jit.pwindow.

This filter is daunting, but simple in concept:
fffb~ & 164.81 1.05946 100
;o ? '." T \

." f F l 1

avg ~ avg ~ avg ~ avg ~ | avg~ avg~

N\

funnel &

I

i
Figure 37.
The fffb~ object is working as a half octave filter in this example. The output of each
filter section is averaged over the frame period to give a value that will determine the size
of the associated object. The filter can have many more bands. I usually have 18. Funnel
will pack each value into a list after an index number that identifies the filter section.
These two item lists are used by the light organ subpatcher.

Peter Elsea 2004 76

ﬁ index, avg value

1

unpack O 0. expand

spread ﬂ * EDDD-.
-‘,.-"

f;‘r Eangh p places splic 0 30
object T

30

center image

Ladd 160 120 [0. |

p drawshape max size is
30 pixels

Figure 38 Lightorg
The light organ section contains a subpatch called places :

ﬁ index ﬂ spread

1 _
.

P —
*2
- —
L - Ll -
int *0.523599 int *1.2566

I I

center 00 poltocar jinner ring poltocar . guter ring

pack 00

@
Figure 38 Places
This calculates a center point and size for each object. Note that three radii are used in
this version. The O object is centered, objects 1- 12 are at the spread value, and 13-18 are
twice as far out. The object is constructed in the drawshapes subpatch of lightorg, which

Peter Elsea 2004 27

could hold the code to draw anything. In this case, star shapes are drawn by the patch in
figure 40.

§15251525152515251528152

-1l _ L _ I _ 1

0. 25133 -1.2566 1.2566 2.5133

2|52 | | 2| T

I I LI 11

poltocar pc:-ltq:uf:ar poltocar poltocar poltocar

nack 000000000000

Ladd
I

prepend framepoly

Figure 40.

This calculates the five corners of a pentagram. The size value will arrive first, and is
used as the radius of the corner points. (The angles are preset. A fancier version would
allow the rotation of the images.) These are packed into a list and stored in the ladd
object. Finally the center coordinates turn up and get added to all five points. The
framepoly command is a convenient way to draw complicated shapes.

Further....

This is just a sampler of visual effects that can be generated from live sounds. These
graphics are deliberately simple, but they can easily be expanded by replacing the
drawing modules. They are also excellent sources for jitter effects like rotated feedback.
After a bit of experimentation, you will quickly develop a library of your own techniques.

Peter Elsea 2004 78

