
Fourier Transforms 1

Peter Elsea 10/22/10 1

Notes on Fourier Transforms
The Fourier transform is something we all toss around like we understand it, but
it is often discussed in an offhand way that leads to confusion for those just
learning their way around DSP. I'm not ready to write a comprehensive manual
on the thing (Smith devotes 14 chapters to it), but here are some assorted bits of
trivia that may clear the air some.

The Fourier transform is about graphs and curves. It is useful in sound analysis,
but it can be applied to other fields as well. When Jean Baptiste Joseph Fourier
invented it in 1807, he was investigating the propagation of heat in metals.

Reminder about trigonometry
A sine function is a graph of the type Y = sin(X).

This curve starts with Y=0. If it started with another value, it would be Y = sin(X
+p) with p indicating phase. A sine curve of some given phase can also be
represented by Y= A sin(X) + B cos(X). Here are some curves with the
coefficients A= 1 B=0; A=0, B = 1; and A= 0.7, B= 0.7. Can you figure out which
is which?

Hint: sin(0) = 0 and cos(0) = 1.

Fourier Transforms 2

Peter Elsea 10/22/10 2

Here's an example of adding two sine functions
Y = A sin(X) + B cos(X) + C sin(2X) + D cos(2X)

In this case, A and C are 1 and B and D are 0. Now the same exercise with C = 0
and D = 0.7

The resultant curve looks quite different. You can build up quite complicated
curves by adding sine and cosine functions at more frequencies. If the
frequencies used are harmonically related, the resultant will be a repeating
waveform.

Fourier Analysis is about taking complex curves apart.

Buzzwords, or fftspeak:
Time domain representation means a graph with time along the bottom.
Waveforms are usually represented this way.

Frequency domain representation means a graph with frequency along the
bottom. Spectral plots are like this. The domain runs from 0 hz to the sampling
frequency.

Fourier Transforms 3

Peter Elsea 10/22/10 3

Polar representation means graphing in terms of an angle and radius. Since sine
waves are inherently angular this can be useful. To map the frequency domain
onto a polar plot, the angle π radians represents 1/2 the sampling rate. The
region on the bottom of the circle represents negative frequency plotted from 0 to
-π. Points on a polar plot can also be indicated by their rectangular (Cartesian)
coordinates.

A function is the mathematical representation of any sort of curve. A sine wave
function could be written f(t) = ksin(ωt). Functions are always functions of some
thing, in this case t. Some texts make the distinction that f(x) is a continuous
function (i.e. an unbroken curve) and f[x] is a discreet function, made up of a lot
of points. (Like a sampled waveform.) f(x) is pronounced "f of x".

Terms of a function are the parts that are separated by + signs.

A coefficient is a value that adjusts the overall value of a term in a function. For
ksin(ωt), k is a coefficient. Most of the hard part of DSP design is finding the
coefficients that make a function give a desired result.

The unit means one. The unit circle on a polar plot is a circle of radius 1. Setting
things to equal 1 often makes math clearer.

The delta function is a 1 followed by as many 0s as you want. It’s the
mathematical equivalent of hitting something with a stick to see what it will do.
When you apply a delta function to digital filter, you get its impulse response.
The Fourier transform of the impulse response is the frequency response.

The letter j is the imaginary square root of -1. Some mathematicians use i for this,
but i means something else in electronics. We aren't interested in roots of
negative numbers per se, but complex numbers are handy.

An imaginary number is one that has j (or i) as a factor. 7j is imaginary. It
Follows that 7 is a real number.

Complex numbers are the sum of a real and imaginary part such as (a + bj). The
math works as if the imaginary part were at right angles to the real part, which
is the way a lot of audio phenomena behave. Some authors indicate variables
that represent complex numbers with a capital letter. Numbers whose imaginary
parts are zero are real numbers. Complex numbers may be represented by the
real and imaginary coefficients or in a polar form.1

1 Either way, they map onto a grid with real across the X axis and imaginary on the Y axis.

Fourier Transforms 4

Peter Elsea 10/22/10 4

The letter ω (Greek lower case omega) is often used to refer to angles. You will
see ω=2πf as a way to convert a frequency f to an angle. When derived this way,
ω may be called angular frequency. You will often see ωt in the literature, which
simply means we are plotting some function of ω at time t.

The letter e means Euler's constant, a number like π that is one of the
fundamental features of the universe. It is used to calculate interest, and is the
base of natural logarithms. There is a famous formula called Euler's relation,
which proves ejω = cos(ω) + jsin(ω). So you can represent a sine wave as ejω .

You multiply two functions by multiplying the value of each point on one curve
by the value of the equivalent point of the other curve.

Correlation of functions is performed by multiplying each point on one curve by
all of the other curve. This gives one complete curve per point. You then add all
of these together.

Convolution of functions is performed by multiplying each point on one curve
by the reverse of the other curve and adding all the results. Convolution of two
time domain functions is equivalent to multiplying the frequency domain
versions, and vice versa.

A transform is a method for converting a function of time into a function of
frequency (or back). In audio, transforms convert waveforms into a spectral
representation or back.

Transforms
There are several transforms out there - Laplace, Z-transform, and Fourier being
the big names.

The Laplace transform converts a waveform into a series of exponentially
decaying sinusoids. This results in a whole family of curves of amplitude vs.
frequency (one curve for each possible exponent) These are represented by
parallel curves in a three dimensional space called the s domain. This is very
useful for designing analog filters, whose response is a combination of
exponential shapes.

Fourier Transforms 5

Peter Elsea 10/22/10 5

Figure 1. Laplace transform. The curves along the real gridlines are components.

The Z transform converts waveforms into something similar to the s plane, but
in a polar scheme known as the Z plane. The frequency is represented by the
angle, and the exponent by the radius, so the amplitude vs. frequency curves are
wrapped in circles. This is used for designing digital filters.

Figure 2. Z-transform. The components are on concentric rings.

The Fourier transform converts waveforms into a series of sinusoids. The Fourier
transform gives sine and cosine coefficients for all of the component frequencies,
so these are plotted in the frequency domain.

Types of Fourier transform
There are four types of signal encountered in audio. These signal types are:
• Non-periodic analog signal

Fourier Transforms 6

Peter Elsea 10/22/10 6

• Periodic analog signal
• Non-periodic digitized (discrete) signal
• Periodic digitized (discrete) signal

Different variants of the Fourier transform are appropriate to each. Some of these
are referred to with initials.

• In the case of the non-periodic analog signal, the sinusoids may have any
frequency, and there may be an infinite number of them. The original Fourier
transform deals with this.

• In the case of the periodic analog signal, the sinusoids take frequencies that
are multiples of the fundamental established by the period (The Fourier
series). There still may be an infinite number. (You need an infinite number
of sinusoids to represent a corner in a waveform, so square waves and
triangles have infinite Fourier representations.)

• In the case of the non-periodic digitized signal, the sinusoids are discrete
themselves, and are limited in frequency to the range of one half of the
sampling rate. The Discrete Time Fourier Transform (DTFT) is used here.

• In the case of the periodic digitized signal, the sinusoids are discrete
themselves, and limited in frequency to a harmonic series up to one half of
the sampling rate. This can be analyzed by the Discrete Fourier Transform,
(DFT) or the Fast Fourier Transform (FFT).

All of these transforms have inverse transforms, which take us back to the
original waveform.

The transforms for analog signals are the theoretical basis for all of the math, but
you can't actually do any of them in a computer. Computers deal with discrete
signals because all they know is lists of numbers. These are processed by the
DFT. The waveform goes in as a list of numbers, and two lists come out. What
numbers do we need in the lists?

Details of the output
A sinusoid has frequency, amplitude and phase. These three parameters must be
included for each of the components of a waveform. When we are dealing with
periodic waveforms, the frequency of a component can be implied by its position
in the list. The frequency positions are called bins. The first component is DC, the
next the fundamental, then the second harmonic, and so on. So lists with values
for each component will be sufficient. What do the two values mean?

Fourier Transforms 7

Peter Elsea 10/22/10 7

Amplitude and phase are one possibility. In that case each pair of numbers is a
polar representation of the component.2 This is very nice, because the list of
amplitudes can be charted as a graph of the frequency response. The frequencies
represented actually range from –sr/2 to sr/2, but we usually only look at the
positive side of the graph. The negative side is a mirror image of this.

We generally ignore phase when we are just looking, since phase has no audible
effect.3 For mathematical convenience, the amplitude range is normalized from 0
to 1.0, and the phase is from -π to π.4

Phase is hard to do math with. The fact that the phase wraps around from -π to π,
and that math leads to division by 0 makes the code awkward. For computation,
a rectangular representation of amplitude and phase is handier. This can be
done by specifying each component as a sum of a cosine wave and a sine wave.
This is the most common definition of the Fourier series:

a0 /2 + (a1cos(x) + b1sin(x)) + (a2cos(2x) + b2sin(2x)) + ….

This is usually output as two lists, one with the a values and the other with the b
values. To keep the lists the same length, a b0 of value 0 is included in the b list.
The lists are called the cosine and sine parts or sometimes the real and imaginary
parts. If there are N points in the input sample, there will be N/2 + 1 points in
each list. The frequency x is the sample rate divided by N. A 512 point DFT with
a sample rate of 44.1 khz gives a fundamental frequency of 86.13 hz. The highest
frequency represented is half the sample rate. (The a0 term is a DC offset)

This is called the real DFT. The algorithm that does this is rather inefficient
(there's a correlation with every potential sinusoid), so a streamlined version
called the Fast Fourier Transform is preferred. The FFT also outputs two lists, ,
which are the coefficients for the real and imaginary parts of complex numbers.

(a0cos(0) - b0jsin(0)) + (a1cos(x) - b1jsin(x)) +(a2cos(2x) - b2jsin(2x))

These lists can be changed to amplitude and phase pairs with a simple Cartesian
to polar conversion.

There are N components in each list from the FFT . They still represent multiples
of x = SR/N. The values beyond half the sampling rate represent negative
frequency components running from - (N/2 -1)x to -x.5

2 Phase is an angle, and a radius and angle define a point on a polar plot.
3 The inaudible effects of phase are significant, and forgetting about phase when you are
processing audio and not just listening is a serious mistake.
4 We usually do angles in radians. It's nicer for the computers. And yes, negative phase is as
likely as positive.

Fourier Transforms 8

Peter Elsea 10/22/10 8

The FFT takes complex numbers as its input6. If the input is a not a complex
signal, the imaginary parts of the input are zero and the output curves will be
symmetrical about the N/2 point. This implies a lot of wasted computation. This
can be skipped, giving the real FFT. The output looks just like the complex FFT.

At this point, many may be worrying about how waveforms that are harmonic
series on other fundamentals can be accurately represented by components based
on the arbitrary frequency SR/N. Consider a 100 hz tone. As an example This
falls between the 86.13 hz and the 166.32 hz components of the transform, so it
would show up in both bins. These, plus the phase information are enough for
the iFFT to give a 100 hz tone back. Of course, the more points in the analysis, the
more accurate the reconstructed signal.

Here is an fft of a 229 hz sine wave showing how a combination of real and
imaginary bins represents a sine wave of arbitrary frequency. This is a 1024 point
fft, which gives a bin spacing of 43.0664 hz. The tallest bin is 215.33 hz. In reality,
the bins are constantly changing.

Figure 3.

Transforming continuous signals
The FFT works with a chunk of signal N points long. The algorithm requires that
N be a power of two. If a recording is too short, we can just add zeros, but more
likely, we are interested in recordings much longer than N samples. We are also
interested in how the transform changes over time, not just the overall average
frequency content.

5 This makes the outputs symmetrical curves. For many purposes the negative frequencies can be
ignored, but the iFFT uses them when converting back to waveforms, so ignoring them would
result in a loss of amplitude.
6 Most waveforms are real, not complex. Where would you find a complex waveform? As the
output of an inverse FFT.

Fourier Transforms 9

Peter Elsea 10/22/10 9

This problem is overcome with a system of windowing, which is similar to the
practice of showing moving pictures by projecting a series of still pictures. In
essence, the incoming signal is broken into chunks of N points and analyzed as a
series of frames. To smooth out the errors caused by this arbitrary chopping,
overlapping chunks are processed-- when the signal is reconstituted, the
overlapped frames are mixed together. For further smoothing, the frames are
faded in and out before the analysis. There are many schemes for doing this.
Luckily for Max users, all of this is hidden in the pfft~ object.

Putting the FFT to work.
So, whats the point? Well, there are several pretty neat tricks we can do with
Fourier transforms of signals. In MSP the output of fft~ is a pair of synchronized
signals, one with the coefficients of the real terms and the other with the
coefficients of the imaginary terms. These can be routed and processed just like
any other signal. (But you wouldn't want to listen to them!)

Viewing Spectra.
The patch in figure 4 will show the spectrum of a sound

Fig 4. The magnitude spectrum of fft~

Note the magic settings for fft~ and scope~ to get a stable image.

Cartopol~ is used to convert the rectangular output of fft~ into magnitude and
phase format. The spectrum is mirrored because fft~ produces the full complex
spectrum-- those are the negative frequencies at the right. It's hard to see much

Fourier Transforms 10

Peter Elsea 10/22/10 10

detail because of the limitations of scope~. Perhaps the future will see a display
optimized for this.

It's not hard to produce a bargraph version of this using a buffer~, peek~ and
poke~, as explained in the visualizing music tutorial.

Pitch Shift
First a word about pfft~7. This is a wrapper for fft operations. To use it you
specify a subpatch to process the fft data, a frame size, and the number of
overlap windows to use. Pfft~ will perform the fft and pass the data to the
subpatch, and will reconstruct whatever the subpatch gives back. Almost any fft
process is going to look like this at the top level:

Figure 5.
Pfft~ requires a name for a subpatcher to load in, an fft size, and the number of
windows to overlap. A large analysis and many windows give better results and
a heavy CPU hit. Generally I get the effect working in a generous setup and then
reduce the options until it starts to sound bad. The supatchers look something
like this

Figure 6.

7 Poly fft~. It's like the Poly~ object, running multiple copies of the same subpatcher.

Fourier Transforms 11

Peter Elsea 10/22/10 11

In the sub patch, the fft analysis comes from an fftin~ object. This specifies the
inlet number on pfft~ this will be connected to, and a window shape if you like
to tweak things. fftin~ has three outlets: one for the real fft signal, one for the
imaginary fft signal, and one for synchronization - this output is an index to the
bin8 number in the frame. The inverse fft happens in fftout~. The real and
imaginary signals applied will be reconstructed at the outlet of pfft~. There is an
argument to specify the outlet number.

The patcher shown will use gizmo~ to shift pitch by semitones. Figure 4 shows
what gizmo~ does- peaks in the spectrum are moved by multiplying the
frequency to maintain the intervals. (fbinshift~ shifts all parts of the spectrum
equally. This modifies the sound in strange ways.)

No shift 1 octave 2 octaves
Figure 7.

Convolution by multiplication
The convolution of two signals an be performed by multiplying their Fourier
transforms. This is done by multiplying the real and imaginary parts of the
transforms. The result is a strange amalgamation of the two sounds. Figure 8
illustrates how this is done in the pfft~. It's nothing more complicated than a
couple of *~ objects.

8 The something of the Asomething terms.

Fourier Transforms 12

Peter Elsea 10/22/10 12

Figure 8.

Filtering by Convolution
When the fft signal has been converted into magnitude and phase format, it
should be clear that you can change the amplitude of the reconstructed signal
just by changing the magnitude part of the fft signal. You can also do this by
changing both the real and imaginary signals in rectangular notation. If you
could isolate particular bands in the fft output, you could change just that part of
the spectrum. A method for doing this is shown in the demonstration patch
"forbidden planet", and deconstructed in figures 9-11.

Figure 9. The elements of the forbidden planet patch.

The main patch: a table containing a shaped spectrum is converted into a signal
by loading it into a buffer~ called EqFun~. Figure shows the subpatcher that
does this conversion.

Fourier Transforms 13

Peter Elsea 10/22/10 13

Figure 10. Setting the buffer~

Figure 11. Doing the work

The pfft~ subpatch shown in figure 11. does the processing. The frequency
control signal is played in sync with the fft via the index~ object connected to the
third output of fftin~. Both the real and imaginary parts of the fft are multiplied
by the control signal and the results sent to fftout~. This will superimpose the
shape of the table contents (i.e. the filter curves drawn by the user) on the
spectrum of the reconstructed signal.

Vocoding with the fft
The next step is to use an input signal for the modification source. This is
illustrated in figure 12.

Fourier Transforms 14

Peter Elsea 10/22/10 14

Figure 12.
 In the fft_vocode supatcher, the signal from fftin~ 2 is converted to magnitude
and phase via cartopol~, and the magnitude is multiplied by the fftin~1 signal.
This superimposes the spectrum of input 2 onto input 1. The result is something
of both.

In the outer patch, a saw waveform is modulated by noise to smear the
harmonics enough to catch matching harmonics of the voice. (You will only get
output when the components of the two signals match closely.) This one gives a
nice singing robot effect.

Study Further
To learn more about the Fourier transforms, I suggest you brush up on your
math, then study one of these:

Loy, Gareth; Musicmathics, volume 2, 2007. The MIT Press
Roads, Curtis; The Computer Music Tutorial 1996. MIT Press
Smith, Steven; The Scientist and Engineer's Guide to Digital Signal Processing,
1997. (Download in pdf or order from www.DSPguide.com)

